idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/02/2023 17:00

Reducing their Natural Signals: How Sneaky Germs Hide from Ants

Florian Schlederer Communications and Events
Institute of Science and Technology Austria

    Not only humans are social, ants are too. Group members are taking care of sick ones by providing collective hygiene measures. This presents germs with a task. They must circumvent the immunity of an individual ant and avoid the group’s healthcare. A new study now published in Nature Ecology & Evolution reveals that germs develop a sneaky way to escape the ant colony’s defense systems by reducing their detection cues.

    Pathogens are disease-causing organisms. By natural selection, they develop evading mechanisms to outsmart the host’s immune system and to get the upper hand. One way to support the immune system and fight back is medical intervention. However, this can lead to unwanted adaptions of pathogens as seen in antibiotic-resistant bacteria. Another strategy is social intervention. Some social groups like ants are trying to fight infection with “social immunity”, the collective hygiene and health care measures to avoid spreading throughout the community. If and how pathogens can respond to this kind of group behavior, is still unknown.
    The latest study by Professor Sylvia Cremer and her research team at the Institute of Science and Technology Austria (ISTA) shows the extraordinary effects of these kinds of host-parasite interactions. Together, with chemical ecologists at the University of Würzburg in Germany, the scientists took a close look at social ants, to see how pathogenic fungi respond to their hosts’ social care intervention during infection. The results reveal that fungi reduce their chemical detection signals to outplay social immunity. The study is published today in Nature Ecology & Evolution.

    More spores but less grooming

    “Fungi infect the ants from the body surface and grow inside, but nestmates groom off many of the spores before they can even cause internal infection,” explains Barbara Milutinović, one of the lead authors, former postdoc in the Cremer Group and now Marie Curie Sklodowska Fellow at Ruđer Bošković Institute in Croatia. The scientists set up an experiment where Argentine ants (Linepithema humile) were infected with pathogenic Metarhizium fungi either in the absence or presence of caregiving colony members. “We found that the fungi fundamentally changed in response to the ant workers' caregiving,” Milutinović continues. Over ten infection cycles, fungi which experienced grooming nestmate ants boosted their spore production compared to fungi accompanied by only individual ants. “Producing more spores will help the fungus counteract the spore-removal by helping nestmates. Yet, we were surprised to see that the ants showed less grooming against the spores,” Sylvia Cremer adds. “This suggests, that the spores have become more difficult to detect by the ants.”

    Fungi lose their typical chemical profile

    To check why ant workers had difficulties sensing fungi and to analyze possible fungal detection cues, the scientists teamed up with a chemical ecologist from the University of Würzburg. Local Professor Thomas Schmitt explains: “The fungi, that adapted to social hosts were perceived less strongly, due to a strong reduction of a fungi-specific compound called ergosterol.” Ergosterol is an essential membrane compound, that all fungi have. By exposing the ants to pure fungal ergosterol or the slightly different non-fungal vertebrate equivalent, the researchers showed, that only the fungal compound induced intense grooming. Milutinović summarises: “This demonstrates that fungal pathogens react to the presence of caregiving ants by reducing their characteristic fungal signals. They are no longer recognized as a disease threat and can escape the social immunity of the colony.”

    The findings highlight the impact that social hosts have on their pathogens by group behaviors. “It’s fascinating how collective hygiene measures trigger evasion strategies in the pathogen. It would be interesting to see how the ant colony will react in turn. Maybe they become more sensitive in detecting lower and lower fungal cues,” Cremer concludes.

    Publication:
    M. Stock, B. Milutinović, M. Hoenigsberger, A. V. Grasse, F. Wiesenhofer, N. Kampleitner, M. Narasimhan, T. Schmitt, S. Cremer. 2023. Pathogen evasion of social immunity. Nat Ecol Evol.
    DOI: 10.1038/s41559-023-01981-6

    Funding information:
    For this study, Sylvia Cremer obtained funding by the German Research Foundation (CR118/3-1) within the Framework of the Priority Program SPP 1399 and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation Programme (No. 771402; EPIDEMICSonCHIP).

    Information on animal studies:
    Collection of the Argentine ant, an unprotected insect species, from the field was in compliance with international regulations, such as the Convention on Biological Diversity and the Nagoya Protocol on Access and Benefit Sharing. All experimental work followed European and Austrian law and institutional ethical guidelines.

    Media contact:
    Florian Schlederer
    Florian.Schlederer@ista.ac.at
    +43 664 8832 6174

    About ISTA
    The Institute of Science and Technology Austria (ISTA) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. ISTA employs professors on a tenure-track model, post-doctoral researchers and PhD students. The Graduate School of ISTA offers fully funded PhD positions to highly qualified candidates with a Bachelor’s or Master’s degree in biology, mathematics, computer science, physics, chemistry, and related areas. While dedicated to the principle of curiosity-driven research, ISTA aims to deliver scientific findings to society through technological transfer and science education. The current President is Martin Hetzer, a renowned molecular biologist and former Senior Vice President at The Salk Institute for Biological Studies in California, USA. www.ista.ac.at


    Original publication:

    DOI: 10.1038/s41559-023-01981-6


    Images

    Argentine ant workers with brood. Unlike humans, ants react immediately to pathogen contamination and not only to the later-developing symptoms of a disease. Nestmates efficiently groom off infectious particles from colony members.
    Argentine ant workers with brood. Unlike humans, ants react immediately to pathogen contamination an ...
    Sina Metzler, Roland Ferrigato
    Sina Metzler, Roland Ferrigato/ISTA

    Fungal outgrowth in ants. The insects get sick when enough fungal spores infect them internally. Metarhizium is dependent on killing its host, so it can then grow out new spores that spread from the carcass.
    Fungal outgrowth in ants. The insects get sick when enough fungal spores infect them internally. Met ...
    Matthias Konrad
    Matthias Konrad/ISTA


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).