idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/10/2023 09:05

A new discovery provides insights into the origin of life

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    A team of scientists from France and Austria has discovered a new abiotic pathway for the formation of peptide chains from amino acids - a key chemical step in the origin of life. The current study provides strong evidence that this crucial step for the emergence of life can indeed occur even in the very inhospitable conditions of space.

    The origin of life is one of the great questions of mankind. One of the prerequisites for the emergence of life is the abiotic - not by living beings caused chemical - production and polymerization of amino acids, the building blocks of life. “Two scenarios are being discussed for the emergence of life on Earth: On the one hand, the first-time creation of such amino acid chains on Earth, and on the other hand, the influx from space,” explains Tilmann Märk of the University of Innsbruck. “For the latter, such amino acid chains would have to be generated in the very unfavorable and inhospitable conditions in space.”

    A team of researchers led by Michel Farizon of the University of Lyon and Tilmann Märk of the University of Innsbruck has now made a significant discovery in the field of abiotic peptide chain formation from amino acids for the smallest occurring amino acid, glycine, a molecule that has been observed several times extraterrestrially in recent years. A study published in the Journal of Physical Chemistry A, which also made the cover of the journal, shows that small clusters of glycine molecules exhibit polymerization upon energy input. A reaction occurs within a cluster consisting of two glycine molecules. The two amino acids become a dipeptide and a water molecule. The reaction of a dipeptide to a tripeptide within a cluster was also demonstrated by the researchers.

    “Our study sheds light on the less likely unimolecular scenario for the formation of such amino acid chains in the extreme conditions of space,” says Michel Farizon. “We were able to show that peptide chain growth occurs through unimolecular reactions in excited cluster ions, without the need for contact with an additional partner such as dust or ice.”

    The current work provides evidence that the first step toward the origin of life can occur in the highly unlikely conditions of space. “The study is an important milestone on the route to understanding the origins of life. The results will serve as a basis for further research in this field,” Michel Farizon and Tilmann Märk are convinced.


    Contact for scientific information:

    Tilmann Märk
    Institut für Ionenphysik und Angewandte Physik
    Universität Innsbruck
    t +43 512 507 2001
    e tilmann.maerk@uibk.ac.at
    w www.uibk.ac.at/ionen-angewandte-physik


    Original publication:

    Glycine Peptide Chain Formation in the Gas Phase via Unimolecular Reactions. Denis Comte, Léo Lavy, Paul Bertier, Florent Calvo, Isabelle Daniel, Bernadette Farizon, Michel Farizon, and Tilmann D. Märk. J. Phys. Chem. A 2023, 127, 775−780 DOI: https://doi.org/10.1021/acs.jpca.2c08248


    Images

    A study provides evidence that the first step toward the origin of life can occur in the highly unlikely conditions of space.
    A study provides evidence that the first step toward the origin of life can occur in the highly unli ...

    ESA/Hubble & NASA, ESO, K. Noll


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).