idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/22/2023 10:37

The benefit of redundancy in biological systems

Michael Hesse Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Evolutionsbiologie

    When viewed from an engineer’s perspective, biology is often messy and imperfect. For example, redundancy is a common feature of biological systems, with the job of one biological component overlapping with that of another. This work investigates whether some types of biological redundancy can - despite the apparent inefficiency - actually be beneficial.

    Translation: a biological process with a high degree of redundancy

    Translation is an energetically costly process by which cells convert genetic information into proteins. The decoding process is performed by ribosomes and transfer RNAs (tRNAs). These important biological molecules are themselves encoded in the cell’s genetic information, often by several (and sometimes hundreds!) of identical gene copies. For example, the commonly used laboratory bacterial strain Escherichia coli K-12 MG1655 contains seven copies of the ribosomal RNA (rRNA) genes and up to six copies of each tRNA gene. This apparent redundancy is, at first, unexpected; why pay the cost of maintaining numerous identical gene copies? One hypothesis is that more gene copies may allow more or faster production of ribosomes and tRNAs, leading to faster growth and division in supportive conditions. To test this hypothesis, Deepa Agashe’s group at the National Centre for Biological Sciences (India) teamed up with the Microbial Evolutionary Dynamics group at the Max Planck Institute for Evolutionary Biology (led by Jenna Gallie).

    Levels of translational redundancy in E. coli can be manipulated in the laboratory

    Various redundant rRNA and/or tRNA gene copies were removed from the E. coli K-12 MG1655 genome. The result was a panel of derived strains, each with a lower degree of translational redundancy than in the original strain. Biological assays were used to demonstrate that the gene deletion events lead to either a reduction in mature tRNA expression (via YAMAT-seq) and/or the slowing of translation (via -galactosidase reporter assays). These results show that (i) the genetic redundancy of E. coli translational components can be decreased, and (ii) the genetic reductions are reflected in the mature translational machinery.

    More gene copies are beneficial under increased translational demand

    The growth profiles of all strains were measured across different environments, in which nutrient availability ranged from poor to rich. Generally speaking, the lower-redundancy strains grew faster than the original strain when nutrients were scarce, but slower than the original strain when nutrients were freely available (see the accompanying Figure). These results are consistent with the initial hypothesis: genetic redundancy comes at a cost when translation is slow, and this cost is alleviated under conditions that support faster translation and growth.

    Conclusion

    This study has demonstrated that carrying multiple rRNA/tRNA gene copies can be beneficial under conditions that support increasingly faster translation and growth. More broadly, the results highlight that (apparent) redundancy can play a beneficial role in complex biological systems, particularly under changing environmental conditions.


    Contact for scientific information:

    Dr. Jenna Gallie, Research Group Leader, Research Group Microbial Evolutionary Dynamics, Max.Planck-Institute for Evolutionary Biology, Plön


    Original publication:

    https://elifesciences.org/articles/81005


    Images

    Genetic redundancy in translational components is costly under nutrient poor conditions, but beneficial under nutrient rich conditions.
    Genetic redundancy in translational components is costly under nutrient poor conditions, but benefic ...


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).