idw - Informationsdienst
Wissenschaft
An der TU Wien wurde eine neuartige Batterie erfunden: Die Sauerstoff-Ionen-Batterie soll extrem langlebig sein, ohne seltene Elemente auskommen und das Problem der Brandgefahr lösen.
Lithium-Ionen-Batterien sind heute allgegenwärtig – vom Elektroauto bis zum Smartphone. Das heißt aber nicht, dass sie für alle Einsatzbereiche die beste Lösung sind. An der TU Wien gelang es nun, eine Sauerstoff-Ionen-Batterie zu entwickeln, die einige wichtige Vorteile aufweist. Sie ermöglicht zwar nicht ganz so hohe Energiedichten wie die Lithium-Ionen-Batterie, aber dafür nimmt ihre Speicherkapazität im Lauf der Zeit nicht unwiderruflich ab: Sie lässt sich regenerieren und ermöglicht damit eine extrem lange Lebensdauer.
Außerdem kann man Sauerstoff-Ionen-Batterien herstellen, ohne dafür seltene Elemente zu benötigen, und sie besteht aus unbrennbaren Materialien. Die neue Batterie-Idee wurde zusammen mit Kooperationspartnern aus Spanien bereits zum Patent angemeldet. Für große Energiespeicher, etwa zum Aufbewahren elektrischer Energie aus erneuerbaren Quellen, könnte die Sauerstoff-Ionen-Batterie eine ausgezeichnete Lösung sein.
Keramische Materialien als neue Lösung
„Wir haben schon seit längerer Zeit viel Erfahrung mit keramischen Materialien gesammelt, die man für Brennstoffzellen verwenden kann“, sagt Alexander Schmid vom Institut für Chemische Technologien und Analytik der TU Wien. „Das brachte uns auf die Idee, zu untersuchen, ob solche Materialien vielleicht auch dafür geeignet wären, eine Batterie herzustellen.“
Die keramischen Materialien, die das Team der TU Wien untersuchte, können doppelt negativ geladene Sauerstoff-Ionen aufnehmen und abgeben. Wenn man eine elektrische Spannung anlegt, wandern die Sauerstoff-Ionen von einem keramischen Material zum anderen, danach kann man sie wieder zurückwandern lassen und so elektrischen Strom erzeugen.
„Das Grundprinzip ist eigentlich sehr ähnlich wie bei der Lithium-Ionen-Batterie“, sagt Prof. Jürgen Fleig. „Aber unsere Materialien haben einige wichtige Vorteile.“ Keramik ist nicht brennbar – Brandunfälle, wie sie bei Lithium-Ionen-Batterien immer wieder vorkommen, sind damit also praktisch ausgeschlossen. Außerdem kommt man ohne seltene Elemente aus, die teuer sind oder nur auf umweltschädliche Weise gewonnen werden können.
„In diesem Punkt ist die Verwendung von keramischen Materialien ein großer Vorteil, weil sie sehr gut angepasst werden können“, sagt Tobias Huber. „Man kann relativ problemlos bestimmte Elemente, die nur schwer zu bekommen sind, durch andere ersetzen.“ Der Prototyp der Batterie verwendet noch Lanthan – ein zwar nicht seltenes aber doch nicht völlig alltägliches Element. Doch auch Lanthan soll noch durch etwas Billigeres ersetzt werden, Forschungen daran laufen bereits. Auf Kobalt oder Nickel, die in vielen Batterien verwendet werden, kann man völlig verzichten.
Sehr lange unbegrenzte Lebensdauer möglich
Der vielleicht wichtigste Vorteil der neuen Batterietechnik ist aber ihre potentielle Langlebigkeit: „In vielen Batterien hat man das Problem, dass sich die Ladungsträger irgendwann nicht mehr bewegen können“, sagt Alexander Schmid. „Dann können sie nicht mehr zur Stromerzeugung genutzt werden, die Kapazität der Batterie sinkt. Nach vielen Ladungszyklen kann das zum ernsten Problem werden.“
Die Sauerstoff-Ionen-Batterie hingegen lässt sich problemlos regenerieren: Wenn Sauerstoff durch Nebenreaktionen verloren geht, dann kann der Schwund einfach durch Sauerstoff aus der Umgebungsluft ausgeglichen werden.
Für Smartphones oder Elektroautos ist das neue Batterie-Konzept nicht gedacht, denn die Sauerstoff-Ionen-Batterie erreicht nur rund ein Drittel der Energiedichte, die man von Lithium-Ionen-Batterien gewohnt ist und läuft bei Tempersturen zwischen 200 und 400 °C. Höchst interessant aber ist die Technologie zum Speichern großer Energiemengen. „Wenn man etwa einen großen Energiespeicher benötigt, um Solar- oder Windenergie zwischenzuspeichern, wäre die Sauerstoff-Ionen-Batterie eine hervorragende Lösung“, glaubt Alexander Schmid. „Wenn man ohnehin ein ganzes Gebäude mit Energiespeicher-Modulen errichtet, spielt die geringere Energiedichte und erhöhte Betriebstemperatur keine entscheidende Rolle. Die Stärken unserer Batterie wären gerade dort aber besonders wichtig: Die lange Lebensdauer, die Möglichkeit, große Mengen dieser Materialien ohne seltene Elemente herzustellen, und die Tatsache, dass es bei diesen Batterien keine Brandgefahr gibt.“
Dr. Alexander Schmid
Institut für Chemische Technologien und Analytik
Technische Universität Wien
+43 1 58801 15820
alexander.e164.schmid@tuwien.ac.at
A. Schmid, M. Krammer, Jürgen Fleig Rechargeable Oxide Ion Batteries Based on Mixed Conducting Oxide Electrodes, to be published in: Advanced Energy Materials (2023).
Prof. Jürgen Fleig, Tobias Huber, Alexander Schmid (v.l.n.r.)
TU Wien
TU Wien
Die Sauerstoff-Ionen-Batterie der TU Wien
TU Wien
TU Wien
Criteria of this press release:
Journalists, all interested persons
Chemistry, Electrical engineering, Energy, Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).