idw - Informationsdienst
Wissenschaft
Supraleiter übertragen elektrischen Strom verlustfrei über jede Entfernung und spielen eine wichtige Rolle bei Quantencomputern und medizinischer Bildgebung. Ein vielversprechendes Material sind Nickelate, Oxidverbindungen auf Nickel- und Neodymbasis. Sie wurden 2019 entdeckt; die Mechanismen, die sie supraleitend machen, waren bisher nicht geklärt. Die Ursache gefunden hat nun ein internationales Team unter Leitung der US-amerikanischen Cornell University. Zu ihm gehörten auch eine Physikerin und ein Physiker der Universität Duisburg-Essen (UDE). Die Entdeckung könnte helfen, neue verbesserte Supraleiter herzustellen. Die Ergebnisse wurden soeben in Nature Materials* veröffentlicht.
„Supraleiter sind die Stars unter den elektrischen Leitern“, erklärt Rossitza Pentcheva, Professorin für Computergestützte Materialphysik an der UDE. „Doch sie funktionieren meist nur bei extremer Kälte, was technische Anwendungen erschwert. Die Wissenschaft sucht daher nach neuen Materialklassen, die bei höheren Temperaturen supraleitend sind.“ Im Fokus sind seit einigen Jahren so genannte Nickelate, die erstmalig an der Stanford University hergestellt wurden.
Das Besondere dabei ist, dass die Supraleitung bislang ausschließlich in Proben nachgewiesen werden konnte, die als sehr dünne, kristalline Filme – weniger als 20 Nanometer dick – auf einem Trägermaterial aufgezogen wurden. Vermutet wurde, dass die Supraleitung nur dort stattfindet, wo der dünne Nickel-Oxid-Film auf das Substrat trifft, auf dem er gewachsen ist.
Das internationale Physikteam, an dem Pentcheva und ihr Mitarbeiter Dr. Benjamin Geisler beteiligt sind, wollte das genauer wissen. Es kombinierte für seine Analysen experimentelle und theoretische Methoden, u.a. die Raster-Transmissions-Elektronenmikroskopie, die Elektronen-Energieverlust-Spektroskopie und quantenmechanische Computersimulationen auf Hochleistungsrechnern. Dadurch ist es erstmals gelungen, die atomare Struktur der Grenzfläche zwischen den beiden Materialien aufzulösen. „Zwischen dem Nickelat-Film und dem Strontiumtitanat-Substrat haben wir eine unerwartete Zwischenverbindung entdeckt“, so Geisler. „Sie schwächt die elektronische Ladungsanhäufung an der Grenzfläche ab.“
Damit steht fest: Nicht die Grenzfläche ist die Quelle der Supraleitung, wie bislang vermutet, sondern es ist die Nickelat-Schicht selbst. Prof. Pentcheva betont: „Die enge Verzahnung experimenteller und theoretischer Methoden war entscheidend für die Entdeckung. Sie stößt weitere Forschung an, so dass neue Materialverbindungen für technologische Anwendungen entstehen können.“
Prof. Dr. Rossitza Pentcheva, Computational Materials Physics, Tel. 0203/37 9-2238, rossitza.pentcheva@uni-due.de
https://www.nature.com/articles/s41563-023-01510-7
https://news.cornell.edu/stories/2023/03/origin-superconductivity-nickelates-rev...
Criteria of this press release:
Journalists
Energy, Materials sciences, Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).