idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/11/2023 12:39

Tandem-Solarzellen ernten doppelten Sonnenstrom

Martin Schäfer Stabsstelle Hochschulkommunikation
Philipps-Universität Marburg

    Marburger Physiker forscht an neuen Wegen für die Solarenergie der Zukunft

    Vergangenes Jahr erreichte die Photovoltaik (PV) einen wichtigen Meilenstein: Die weltweit installierte elektrische Leistung überstieg den magischen Wert von einem Terawatt (TW). „Das entspricht ungefähr eintausend Atomkraftwerken“, erläutert der Marburger Physiker Prof. Dr. Jan Christoph Goldschmidt. Wieviel PV-Leistung in Zukunft für einen kosteneffizienten Klimaschutz und zur Deckung der Energiebedürfnisse der Menschheit notwendig ist, hat eine internationale Forschungsgruppe jetzt im Fachmagazin „Science“ (Ausgabe vom 7. April 2023) vorgerechnet. Bis zum Jahr 2050 könnten 75 TW installiert sein. „Die PV leistet dann den größten Beitrag zur Energieversorgung und um den Klimawandel einzudämmen“, sagt Co-Autor Goldschmidt.

    Eine Herausforderung, die sein Team und er identifiziert haben ist, langfristig die Energieausbeute zu erhöhen, und zum anderen den Ressourcen- wie auch den Energieverbrauch bei der Produktion von Solarzellen weiter zu reduzieren. Wie eine Solarzelle der Zukunft aussieht, daran forschen Goldschmidt und sein Team in der Marburger Physik.

    Klassische Solarzellen funktionieren auf Siliziumbasis. Deren Energieausbeute – Fachleute sprechen von Wirkungsgrad – ist physikalisch bedingt auf rund 29 Prozent beschränkt. Für höhere Wirkungsgrade sind daher andere Materialien, Materialkombinationen sowie neue Zelldesigns oder -konstruktionen gefordert „Die Idee ist hier, zwei verschiedene Solarzellen übereinander zu stapeln“, sagt Goldschmidt. Bei diesen sogenannten Tandem-Solarzellen wandelt eine klassische Siliziumzelle das langwellige Licht in elektrische Energie um. Der kurzwelligere, sichtbare Anteil, der sonst nicht besonders effizient genutzt wird, wird dagegen in einer zweiten Materialschicht in Strom umgewandelt. Besonders geeignet sind hierfür sogenannten Perowskite. Hierbei handelt es sich um eine Kristallstruktur, die erst seit rund zehn Jahren für PV-Anwendungen erforscht wird.

    Energieverbrauch und Ressourceneinsatz weiter reduzieren

    Beim Ressourceneinsatz wollen die Forschenden an gleich mehreren Stellschrauben drehen. Wurde bereits in den Jahren 2000 bis 2022 die Siliziummenge (Si) pro Megawatt (MW) Leistung von 14 Tonnen auf 2 bis 3 Tonnen reduziert, so dürfte sich das mit noch dünneren Siliziumscheiben weiter verringern. Da Silizium im Herstellungsprozess die größte Energiemenge verbraucht, wollen die Forschenden gar komplett auf Si verzichten. „Ins Spiel kommen Tandem-Zellen aus zwei verschiedenen Perowskit-Schichten, die wir hier bald herstellen und charakterisieren wollen“, sagt Goldschmidt. Ferner sollen auch seltene und teure Materialien wie Silber für die elektrische Kontaktierung immer weiter verringert und durch Kupfer, Aluminium oder sogar aus Pflanzenreststoffen erzeugtem Kohlenstoff ersetzt werden. Das setzt detaillierte Forschung an Materialproben und -systemen voraus, die der Marburger Physiker, der vor rund einem Jahr vom Fraunhofer-Institut für Solare Energieerzeugung von Freiburg an den Fachbereich Physik der Philipps-Universität gewechselt ist, bald in neuen Labors anstoßen will.

    Goldschmidt ist sich sicher, dass in den Tandem-Perowskit-Zellen enormes Potenzial steckt, um den Energiebedarf in Zukunft umweltschonend und das Klima schützend decken zu können. „Jedes Zehntel Grad Celsius weniger Klimaerwärmung zählt, um gravierende Klimafolgen zu vermeiden“, sagt Goldschmidt. Ein schneller Ausbau der PV auf Basis der aktuellen Si-Technologie jetzt und die langfristige Entwicklung einer noch effizienteren und Ressourcen-schonender Solartechnik spielt dabei nach Ansicht des Fachmanns die größte Rolle.


    Contact for scientific information:

    Prof. Dr. Jan Christoph Goldschmidt
    Fachbereich Physik
    Philipps-Universität Marburg
    Tel.: 06421 28-21337
    E-Mail: jan.christoph.goldschmidt@physik.uni-marburg.de


    Images

    Zur Sonne: Auf dem Dach der Marburger Physik will Jan Christoph Goldschmidt in kleinen Messapparaturen neue Materialien für Solarzellen vermessen.
    Zur Sonne: Auf dem Dach der Marburger Physik will Jan Christoph Goldschmidt in kleinen Messapparatur ...
    Foto: Martin Schäfer


    Attachment
    attachment icon Tandem-Solarzellen ernten doppelten Sonnenstrom

    Criteria of this press release:
    Journalists, Teachers and pupils, all interested persons
    Energy, Environment / ecology, Materials sciences, Oceanology / climate, Physics / astronomy
    transregional, national
    Miscellaneous scientific news/publications, Transfer of Science or Research
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).