idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/12/2023 11:19

Nanoröhren als optische Stoppuhr für den Nachweis von Botenstoffen

Dr. Julia Weiler Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Ein interdisziplinäres Forschungsteam aus Bochum und Duisburg hat einen neuen Weg gefunden, um den wichtigen Botenstoff Dopamin im Gehirn nachzuweisen. Die Forschenden nutzten Kohlenstoff-Nanoröhren dafür. In früheren Studien hatte das Team um Prof. Dr. Sebastian Kruß bereits gezeigt, dass die Röhren in Anwesenheit von Dopamin heller leuchten. Nun zeigte die interdisziplinäre Gruppe, dass sich auch die Dauer des Leuchtens verändert. „Es ist das erste Mal, dass ein so wichtiger Botenstoff wie Dopamin auf diese Art und Weise nachgewiesen werden konnte“, sagt Sebastian Kruß.

    „Wir sind davon überzeugt, dass sich dadurch eine neue Plattform eröffnet, die auch den besseren Nachweis von anderen humanen Botenstoffen wie Serotonin ermöglicht.“ Die Arbeiten waren eine Kooperation von Kruß’ beiden Arbeitsgruppen in der physikalischen Chemie an der Ruhr-Universität Bochum und am Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme (IMS).

    Die Ergebnisse beschreibt ein Team um Linda Sistemich und Sebastian Kruß von der Ruhr-Universität Bochum zusammen mit Kolleginnen und Kollegen vom IMS und der Universität Duisburg-Essen in der Zeitschrift Angewandte Chemie – International Edition, online veröffentlicht am 9. März 2023.

    Mit Dopamin leuchten die Nanoröhren nicht nur heller, sondern auch länger

    Bei den verwendeten Sensoren handelt es sich um Röhren aus Kohlenstoff, die 100.000-mal dünner sind als ein menschliches Haar. Werden sie mit sichtbarem Licht bestrahlt, können sie selbst Licht im Nah-Infrarotbereich, also bei einer für Menschen nicht sichtbaren Wellenlänge von 1.000 Nanometern, aussenden.

    Vorangegangene Studien unter der Leitung von Sebastian Kruß hatten ergeben, dass bestimmte mit Biopolymeren modifizierte Kohlenstoff-Nanoröhren heller leuchten, wenn sie mit Dopamin in Berührung kommen. In der neuen Studie betrachteten die Forschenden, wie lange es dauert, bis die Nanoröhren dieses Licht im Nah-Infraroten ausgesendet haben. Dafür betrachteten die Wissenschaftlerinnen und Wissenschaftler das ausgesendete Licht als einzelne Lichtteilchen. Mit einer Stoppuhr erfassten sie die Zeit, die die Lichtteilchen von dem Zeitpunkt an brauchten, an dem die Nanoröhre bestrahlt wurde, bis zu dem Zeitpunkt, an dem die Lichtteilchen von der Nanoröhre ausgesendet wurden. „Um eine solche Zeitspanne zu messen, benötigen wir besondere Stoppuhren, denn die Aussendung des Lichts ist 100 Millionen Mal schneller als der Lidschlag eines Menschen“, veranschaulicht Linda Sistemich.

    Diese sogenannte Lebenszeit des Lichtes ist charakteristisch für unterschiedliche Stoffe und stellt ein robusteres Signal im Vergleich zur Helligkeit dar. Während die Helligkeit davon abhängig ist, wie viele Schichten an Zellen das Licht durchdringen muss, bis es gemessen werden kann, bleibt die Lebenszeit des Lichts davon unbeeinflusst. Dadurch, dass jedes einzelne Lichtteilchen die Information über die Lebenszeit in sich trägt, ist jedes gemessene Teilchen ein Zugewinn an Information, unabhängig davon, wie viele Teilchen gemessen werden. „Das ist vor allem vorteilhaft, wenn man, wie wir, nicht nur in einfachen wässrigen Lösungen misst, sondern auch in komplizierten Umgebungen wie in der Zellkultur oder im Organismus selbst“, erklärt Sebastian Kruß, der an der Ruhr-Universität die Gruppe Funktionale Grenzflächen und Biosysteme leitet und Mitglied im Exzellenzcluster Ruhr Explores Solvation, kurz RESOLV, sowie im Graduiertenkolleg International Graduate School of Neuroscience ist.

    In der vorliegenden Arbeit wurde die Dopamin-Freisetzung von einzelnen Zellen erfasst. Die Methode wäre aber auch auf Netzwerke von Zellen oder Organismen anwendbar.

    Dopamin ist ein zentraler Botenstoff im Gehirn

    Das nachgewiesene Dopamin ist ein wichtiger Botenstoff im menschlichen Gehirn, über den die Zellen miteinander in Kommunikation treten. Dopamin steuert nicht nur das Belohnungszentrum, sondern ist auch die treibende Kraft für Bewegung, Koordination, Konzentration und geistige Leistungsfähigkeit. Wird zu wenig Dopamin ausgeschüttet, kann es zu Bewegungsstörungen und abnehmender Gedächtnisleistung kommen – Symptome, die beispielsweise bei der Parkinsonschen Krankheit auftreten.

    Förderung

    Die Arbeiten wurden gefördert durch die DFG, das Exzellenzcluster RESOLV und das Fraunhofer Attract Programm.


    Contact for scientific information:

    Prof. Dr. Sebastian Kruß
    Funktionale Grenzflächen und Biosysteme
    Fakultät für Chemie und Biochemie
    Ruhr-Universität Bochum
    Tel.: +49 234 32 29946
    E-Mail: sebastian.kruss@ruhr-uni-bochum.de


    Original publication:

    Linda Sistemich, Phillip Galonska, Jan Stegemann, Julia Ackermann, Sebastian Kruss: Near-infrared lifetime imaging of biomolecules with carbon nanotubes, in: Angewandte Chemie International Edition, 2023, DOI: 10.1002/anie.202300682, https://doi.org/10.1002/anie.202300682


    Images

    Das Bochumer Team macht Botenstoffe mithilfe von Kohlenstoff-Nanoröhren sichtbar.
    Das Bochumer Team macht Botenstoffe mithilfe von Kohlenstoff-Nanoröhren sichtbar.

    RUB, Kramer

    Bochumer Forschungsteam: Linda Sistemich und Sebastian Kruß
    Bochumer Forschungsteam: Linda Sistemich und Sebastian Kruß

    RUB, Kramer


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).