idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/12/2023 17:09

Genetic heritage from the Stone Age influences our chance to have a long life

Eva Sittig Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Researchers at Kiel University have studied the evolutionary history of the longevity gene APOE. To do this, they analysed data obtained from human skeletons that are up to 12,000 years old.

    Our lifestyle has a very big influence on our life expectancy, such as our level of fitness, or whether we smoke or are overweight. Other external factors like social contacts, environmental conditions or education are also important. In addition, our genes also help determine how long we may live. Longevity in humans means living to 95 years and older in relatively good health. "Variations in the APOE gene have the highest genetic contribution to longevity," says Professor Almut Nebel from the Institute of Clinical Molecular Biology (IKMB) at Kiel University (CAU).

    The APOE gene provides the blueprint for apolipoprotein E (APOE), which plays an important role in lipid metabolism as a component of lipoproteins. The three variants ε2, ε3 and ε4 are relevant for longevity. APOE ε4 is associated with a very high risk of Alzheimer's disease and can consequently shorten life expectancy. APOE ε2, on the other hand, increases the chance of living a long life, and ε3 is considered neutral. In Europe, the three variants are distributed quite unevenly, with the frequency of the unfavourable variant ε4 decreasing from the north (22%) towards the south (6%). The ε2 and ε3 frequencies also vary widely geographically, with ε3 usually being the most common (at least 70%) and ε2 the rarest variant in a population (at most 12%). A research team led by Professor Nebel was the first to use paleogenetics to investigate what may have led to this distribution. They recently published their results in the journal Aging Cell. "We were able to show that the current distribution of variants in Europe arose primarily from two major immigrations 7,500 years ago and 4,800 years ago, and the subsequent mixing of population groups," reports first author Daniel Kolbe from Nebel's research group. "The differences between northern and southern Europe can mainly be explained by these two demographic processes," says Kolbe, who is doing his PhD in the Translational Evolutionary Research (TransEvo) research training group (GRK) at the CAU.

    This finding is completely new. So far, the different frequencies of the three gene variants have mainly been attributed to natural selection. This assumption was based on genetic data from people living today. "In our work, we included DNA sequences from archaeologically well-dated skeletons. These allow us to travel back in time and thus directly explore the possible influence of events in the past," says Kolbe. The investigation included over 358 datasets from bone samples which are up to 12,000 years old. These were used to calculate the frequencies of APOE variants in various prehistoric and medieval populations in Europe. Surprisingly, according to Kolbe, the mobile hunter-gatherers of the Stone Age had a high frequency of the ε4 variant (about 40%), which from today's perspective is considered harmful, while ε2 was not detectable. The first sedentary farmers, on the other hand, had a very low ε4 frequency (about 4%) and a high ε3 frequency (about 91%). "These differences probably arose as adaptations to the specific diets and lifestyles of the two groups," Kolbe says. We know from modern studies that physical activity can reduce the risk of Alzheimer's disease for ε4 carriers. "We will likely never know whether the hunter-gatherers suffered from Alzheimer's or how ε4 may have been involved. But it is possible that they quite literally outran or escaped the bad variant, since they periodically covered long distances on foot," Kolbe explains. "Our study thus supports the recommendation that an active lifestyle pays off, especially for the approximately 15 percent of Germans who have the ε4 variant.” In contrast, ε2 and ε3 seem to have represented an advantage for the first farming people. APOE ε2 may have contributed to better digestion of high-starch diets, which were often on the menu of farmers. APOE ε3 in turn probably favoured the storage of calories in the form of fat as a reserve for hard times. These specific adaptations are probably not related to longevity, which may well be a modern phenomenon.

    This study underpins how important evolutionary biology research approaches are for many challenges of the modern era. "Our results show how an unfavourable genetic predisposition can be compensated for by an adapted lifestyle, which in this case is particularly relevant for the ageing population of today," explains last author Nebel, who has long been researching the molecular basis of longevity.

    About RTG TransEvo
    The RTG TransEvo is a research training group at Kiel University (CAU) funded by the German Research Foundation (GRK 2501). The aim is to investigate and promote the relevance of evolutionary principles to applied problems. Unintended consequences of human intervention often result from actions that influence natural selection, for example the use of antibiotics or cancer drugs in medicine, pesticides in agriculture or human intervention in the Earth's ecosystems. Surprisingly, evolutionary concepts are rarely used to improve our understanding of these applied challenges and to develop new sustainable solutions. The overarching goal of the TransEvo research training group is to train two main competencies in PhD students: using knowledge and concepts from basic research in evolutionary biology to improve our understanding of current challenges in applied fields, and using the newly gained knowledge to enrich our understanding of evolution.

    Kiel University
    Press, Communication and Marketing, Eva Sittig, Text/editing: Kerstin Nees
    Postal address: D-24098 Kiel, Germany, Telephone: (0431) 880-2104, Fax: (0431) 880-1355
    E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni
    Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni


    Contact for scientific information:

    Daniel Kolbe
    Institute of Clinical Molecular Biology (IKMB), CAU
    Longevity Ancient DNA Research group
    phone: +49 (0) 431-500-15123
    email: d.kolbe@ikmb.uni-kiel.de

    Prof. Almut Nebel
    Institute of Clinical Molecular Biology (IKMB), CAU
    Longevity Ancient DNA Research group
    phone: +49 (0) 431-500-15155
    email: a.nebel@mucosa.de


    Original publication:

    Kolbe D, da Silva NA, Dose J, Torres GG, Caliebe A, Krause-Kyora B, Nebel A. Current allele distribution of the human longevity gene APOE in Europe can mainly be explained by ancient admixture. Aging Cell. 2023 Mar 23:e13819. https://doi.org/10.1111/acel.13819


    More information:

    http://www.ikmb.uni-kiel.de/research/longevity-ancient-dna-research
    https://transevo.de
    http://www.kls.uni-kiel.de


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, History / archaeology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).