idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/27/2023 11:46

Jülicher Forschende entwickeln neuen Germanium-Zinn-Transistor als Alternative zu Silizium

Dipl.-Biologin Annette Stettien Unternehmenskommunikation
Forschungszentrum Jülich

    Wissenschaftler des Forschungszentrums Jülich haben einen neuartigen Transistor aus einer Germanium-Zinn-Legierung gefertigt, der gegenüber herkömmlichen Schaltelementen einige Vorteile aufweist. Ladungsträger können sich in dem Material schneller bewegen als in Silizium oder Germanium, was niedrigere Spannungen im Betrieb möglich macht. Der Transistor ist damit ein vielversprechender Kandidat für künftige Low-Power- und High-Performance-Chips und könnte sich als nützlich für die Entwicklung von Quantencomputern erweisen.

    Etwa alle zwei Jahre verdoppelte sich in den letzten 70 Jahren die Anzahl der Transistoren auf einem Chip – so besagt es das bis heute gültige Mooresche Gesetz. Entsprechend kleiner wurden die Schaltkreise, doch ein Ende der Entwicklung scheint absehbar. „Inzwischen ist man bei Strukturen angekommen, die nur noch 2 bis 3 Nanometer groß sind. Das entspricht etwa zehn Atomdurchmessern. Damit bewegt man sich an den Grenzen des Machbaren, viel kleiner geht es nicht“, erklärt Prof. Qing-Tai Zhao vom Peter Grünberg Institut (PGI-9) des Forschungszentrums Jülich.

    Schon länger suchen Forschende daher nach einem Ersatz für Silizium, dem Grundstoff der Halbleiterindustrie. „Die Idee ist, ein Material zu finden, das günstigere elektronische Eigenschaften aufweist und mit dem man die gleiche Performance bei größeren Strukturen erzielen kann“, so Qing-Tai Zhao.

    Im Fokus der Forschung steht unter anderem ein Material, das bereits in den Anfängen der Computerära zum Einsatz kam: Germanium. Elektronen können sich darin deutlich schneller bewegen als in Silizium, zumindest in der Theorie. Qing-Tai Zhao und seine Kollegen gingen jetzt noch einen Schritt weiter. Um die elektronischen Eigenschaften weiter zu optimieren, bauten sie Zinn-Atome in das Germanium-Kristallgitter ein. Das Verfahren wurde vor einigen Jahren am Peter Grünberg Institut (PGI-9) des Forschungszentrums Jülich entwickelt.

    „Das Germanium-Zinn-System, das wir erprobt haben, macht es möglich, die physikalischen Grenzen der Siliziumtechnologie zu überwinden“, erklärt Qing-Tai Zhao. Der Transistor aus Germanium-Zinn zeigt in Experimenten eine 2,5-fach höhere Elektronenbeweglichkeit als ein vergleichbarer Transistor aus reinem Germanium.

    Ein weiterer Vorteil: Das neue Material ist mit dem bestehenden CMOS-Prozess zur Chip-Herstellung kompatibel. Germanium und Zinn stammen aus der gleichen Hauptgruppe im Periodensystem wie Silizium. Die Germanium-Zinn-Transistoren ließen sich daher mit bestehenden Produktionslinien direkt in konventionelle Siliziumchips integrieren.

    Viel Potenzial für die Computer der Zukunft

    Neben klassischen Digitalrechnern könnten auch Quantencomputer von dem Germanium-Zinn-Transistor profitieren. Schon länger gibt es Bestrebungen, Teile der Steuerelektronik direkt auf dem Quantenchip anzubringen, der im Innern eines Quantencomputers bei Temperaturen nahe dem absoluten Nullpunkt betrieben wird. Messungen legen nahe, dass Germanium-Zinn-Transistoren unter diesen Bedingungen deutlich besser funktionieren als solche aus Silizium.

    „Die Herausforderung besteht darin, einen Halbleiter zu finden, der auch bei tiefsten Temperaturen noch mit geringen Spannungen schaltbar ist“, erklärt Qing-Tai Zhao. Für Silizium flacht diese Schaltkurve unterhalb von 50 Kelvin ab. Die Transistoren benötigen dann eine hohe Spannung und viel Energie. Die entstehende Wärme führt letztlich zu Störungen der empfindlichen Quantenbits. „Germanium-Zinn schneidet bei Messungen bis zu 12 Kelvin besser ab und es besteht die Hoffnung, das Material auch bei noch niedrigeren Temperaturen einzusetzen“, so Qing-Tai Zhao.

    Der Germanium-Zinn-Transistor könnte sich zudem als nützlicher Baustein für die optische On-Chip-Datenübertragung erweisen. Die Übermittlung von Informationen mit Lichtsignalen ist bereits in vielen Datennetzen Standard, weil sie erheblich schneller und energiesparender ist als der Transfer über elektrische Leiterbahnen. Im Bereich der Mikro- und Nanoelektronik werden Daten dagegen meist noch elektrisch übertragen. Institutskollegen der Jülicher Arbeitsgruppe von Dr. Dan Buca haben in der Vergangenheit bereits einen Germanium-Zinn-Laser entwickelt, der die Möglichkeit schafft, Daten direkt auf einem Siliziumchip optisch zu übertragen. Der Germanium-Zinn-Transistor ist nun ein weiterer Baustein, um die optische und elektrische Datenübertragung zu vereinen.


    Original publication:

    Mingshan Liu, Yannik Junk, Yi Han, Dong Yang, Jin Hee Bae, Marvin Frauenrath, Jean-Michel Hartmann, Zoran Ikonic, Florian Bärwolf, Andreas Mai, Detlev Grützmacher, Joachim Knoch, Dan Buca, Qing-Tai Zhao
    Vertical GeSn nanowire MOSFETs for CMOS beyond silicon
    Communications Engineering (25 February 2023), DOI: 10.1038/s44172-023-00059-2


    More information:

    https://www.fz-juelich.de/de/aktuelles/news/pressemitteilungen/2023/juelicher-fo... Pressemitteilung des Forschungszentrums Jülich


    Images

    Der Germanium-Zinn-Prozessor wurde in der Helmholtz Nano Facility hergestellt, der zentralen Technologieplattform für die Herstellung von Nanostrukturen und Schaltungen in der Helmholtz-Gemeinschaft.
    Der Germanium-Zinn-Prozessor wurde in der Helmholtz Nano Facility hergestellt, der zentralen Technol ...
    Sascha Kreklau
    Forschungszentrum Jülich / Sascha Kreklau

    Elektronenmikroskopische Aufnahmen des Germanium-Zinn-Transistors: Der Aufbau folgt einer 3D-Nanodrahtgeometrie, ein Design, das auch für die neueste Generation von Computerprozessoren verwendet wird.
    Elektronenmikroskopische Aufnahmen des Germanium-Zinn-Transistors: Der Aufbau folgt einer 3D-Nanodra ...
    Forschungszentrum Jülich
    Forschungszentrum Jülich


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Electrical engineering, Information technology, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).