idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/22/2023 06:57

Successfully reducing animal testing: The 3Rs principle in fish research

Isabel Haberkorn Presse- und Öffentlichkeitsarbeit
Forschungsinstitut für Nutztierbiologie (FBN)

    Scientists at the Research Institute for Farm Animal Biology (FBN) are increasingly using cell cultures to draw conclusions about the consequences of climate change

    According to animal experimentation statistics, fish are the second most commonly used group of animals in research after mice. They play an important role in aquaculture and also serve as model animals in various research areas.

    "Applying the 3Rs principle means reducing, refining and replacing animal experiments to improve ethical standards and minimize the use of animals," explains PD Dr. Bianka Grunow, head of the "Growth Physiology of Fish" working group at the Research Institute for Farm Animal Biology (FBN) in Dummerstorf. A recent review and options for improving fish welfare in animal studies was published in May in Reviews inReviews in Fish Biology and Fisheries*.

    The working group "Growth Physiology of Fish" at the FBN is therefore focusing on three core topics where the 3R principle is central: The analysis of fish fillets to draw conclusions about animal quality and health; the development of fish larvae to improve husbandry methods; and the study of fish cell culture systems. While the first two research areas focus primarily on animal welfare in aquaculture facilities, the study of cell culture systems aims to replace animal testing on fish and thereby reduce animal testing.

    Reduce, refine, replace - a win-win situation for science and industry

    By using cell culture systems, which are already standard in human research, many conventional animal experiments in fish research become obsolete. This approach not only offers ethical benefits, but also opens up new opportunities to improve research efficiency and reduce resource consumption and environmental impact. Reducing, improving and replacing animal testing is increasingly being discussed in the research community, as well as in government and society. "Although fish do not have the same expression as mammals, the high number of fish in experiments makes it even more important to fundamentally understand this vertebrate group," emphasizes PD Dr. Bianka Grunow. By applying the 3Rs principle and using modern technologies and innovative research methods, scientists will be able to address increasingly complex questions in the future without having to resort to large numbers of experimental animals.

    Investigation of cell cultures provides insights into climate change

    The study of cell cultures also enables fundamental insights into the effects of climate change. "By producing cell cultures from fish tissue and studying the cells on a physiological basis, we can, for example, draw conclusions about the effects of rising water temperatures or reduced oxygen levels - and without using animals," explains PD Dr. Bianka Grunow. Rising temperatures affect the survivability of fish and especially fish larvae, especially in shallow water areas such as coastal areas. In addition, the amounts of pollutants are higher in coastal waters. The knowledge gained from the study of cell cultures can be used in the aquaculture industry as well as for other ecotoxicological issues in research.

    *Original publication:
    Status assessment and opportunities for improving fish welfare in animal experimental research according to the 3R-Guidelines.
    Reviews in Fish Biology and Fisheries, Published: 12 May 2023
    https://doi.org/10.1007/s11160-023-09781-8
    https://doi.org/10.3390/toxics9110286

    Contact
    Research Institute for Farm Animal Biology (FBN)
    Director: Prof. Dr. Klaus Wimmers

    Working Group "Growth Physiology in Fishes
    PD Dr. Bianka Grunow
    grunow@fbn-dummerstorf.de

    Press and Public Relations
    Isabel Haberkorn
    haberkorn@fbn-dummerstorf.de
    +49 38208-68 605
    http://www.fbn-dummerstorf.de


    Contact for scientific information:

    Working Group "Growth Physiology in Fishes
    PD Dr. Bianka Grunow
    grunow@fbn-dummerstorf.de


    Original publication:

    Status assessment and opportunities for improving fish welfare in animal experimental research according to the 3R-Guidelines.
    Reviews in Fish Biology and Fisheries, Published: 12 May 2023
    https://doi.org/10.1007/s11160-023-09781-8
    https://doi.org/10.3390/toxics9110286


    Images

    PD Dr. Bianka Grunow of the working group on growth physiology in fish.
    PD Dr. Bianka Grunow of the working group on growth physiology in fish.
    Foto: FBN/Haberkorn
    FBN


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Environment / ecology, Oceanology / climate, Zoology / agricultural and forest sciences
    transregional, national
    Scientific Publications, Transfer of Science or Research
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).