idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/12/2023 15:02

Climate-Friendlier Car Production

Dr. Torsten Fischer Kommunikation und Medien
Helmholtz-Zentrum Hereon

    In a collaborative effort led by the Helmholtz-Zentrum Hereon, research and industry are joining forces to promote environmentally friendly production of lightweight components for the automotive industry. The joint project, "S3-ALU," funded by the German Federal Ministry of Economics and Climate Protection (BMWK), aims to investigate the replacement of pure aluminum with recycled aluminum, potentially reducing the CO2 footprint per vehicle by 55 percent.

    The production of SUVs in Germany emits a staggering 22,000 tons of CO2 on a daily basis. A significant portion of this emissions stems from the use of aluminum, specifically primary aluminum. This form of aluminum is directly derived from bauxite and, due to its weight and corrosion advantages, serves as a key component in automotive alloy production. The research-industry consortium is now exploring the possibility of substituting primary aluminum with secondary aluminum, which is impure and recycled, while maintaining its beneficial properties.

    The potential for CO2 savings is enormous: manufacturing one unit of secondary aluminum consumes only five percent of the energy required for primary aluminum production. Applied to automotive production, this translates to a reduction of 0.7 metric tons of CO2 per vehicle or 700,000 metric tons of CO2 annually for SUV production in Germany. With aluminum increasingly being used in electric vehicles to offset the battery weight, the investigation and optimization of climate-friendly alternatives like secondary aluminum become even more critical. Current estimates indicate that aluminum-intensive designs have a CO2 savings potential of up to 1.7 tons per vehicle.

    The Role of Digital Twins

    To identify the most suitable substitute for primary aluminum, researchers will employ a digital twin to model different compositions of secondary aluminum. This approach eliminates the need for extensive experimentation with various material variants by exploring them within the model, thereby saving time and resources. Preliminary investigations have already shown that minor impurities in primary aluminum are acceptable for safe material usage. However, determining the permissible proportion and composition of recycled aluminum poses a significant question, one that can be answered through the use of a digital twin.

    Eugen Gazenbiller, a doctoral student at the Hereon Institute for Surface Research, explains, "The development of a digital twin, a multi-scale physical representation of the aluminum secondary alloy under investigation, will greatly reduce experimental efforts and allow for evaluating the potential use of non-uniform quality scrap in material manufacturing or production."

    The joint project, "S3-ALU: Simulation methodologies for the evaluation of components and systems for sustainable lightweight construction with secondary aluminum," has received a funding grant of 2 million euros over three years from the German Federal Ministry of Economics and Climate Protection (BMWK). Research partners include the Max Planck Institute for Iron Research (MPIE), Access e.V., and the Helmholtz-Zentrum Hereon, with the latter coordinating the project. Industry collaborators encompass Volkswagen AG, Bode - die Tür GmbH, and LGL Bad Langensalza GmbH.

    Background: Digital Twins

    A digital twin is a virtual representation of a real process, object, or material, maintaining a two-way connection. This means that any changes made to the actual object are incorporated into the digital twin in near real-time. Subsequently, the digital twin can be subjected to various conditions, simulating potential "what-if" scenarios for the physical object. For instance, materials and workpieces can be digitally tested under different circumstances before undergoing the complete production process.


    Contact for scientific information:

    Eugen Gazenbiller I Helmholtz-Zentrum Hereon | Institut für Oberflächenforschung
    T: +49 (0) 4152 87-1936 I eugen.gazenbiller@hereon.de I www.hereon.de


    More information:

    https://hereon.de/institutes/surface_science/index.php.en


    Images

    Consortium partners at the kick-off meeting at the Helmholtz-Zentrum Hereon. Photo: Hereon/ Steffen Niemann
    Consortium partners at the kick-off meeting at the Helmholtz-Zentrum Hereon. Photo: Hereon/ Steffen ...


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Economics / business administration, Materials sciences, Oceanology / climate, Social studies, Traffic / transport
    transregional, national
    Cooperation agreements, Miscellaneous scientific news/publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).