idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/01/2023 09:47

ERC Proof-of-Concept grant ‘Design2Guide’: Cell-instructive matrices to deconstruct tumour tissues

Kerstin Wustrack Öffentlichkeitsarbeit
Leibniz-Institut für Polymerforschung Dresden e. V.

    Researchers at the Leibniz Institute of Polymer Research Dresden are using a hydrogel-based model to develop a rational design strategy and guide better therapeutic options for people diagnosed with pancreatic cancer. Therefore, the interdisciplinary team of Professor Daniela Lössner received a Proof-of-Concept grant ‘Design2Guide’ from the European Research Council (ERC).

    The team’s research addresses a clinical problem with an innovative approach. Pancreatic cancer is one of the deadliest cancers and only 10% of people diagnosed with this disease survive 5 years after diagnosis. To find better therapies, patient-specific models that mimic the biology of tumour tissues and interactions between different cell types are developed. The aim of ‘Design2Guide’ is to build a controllable platform for studying the human disease in the laboratory. The new platform will be used to discover better ways of treating the disease.

    Pancreatic cancer has a fibrotic, or scar-like, tumour microenvironment and a collagenous extracellular matrix, which correlate with poor prognosis and patient survival. Important cell functions are associated with the presence of several matrix proteins. Current experimental models fail to replicate the specific microenvironment and matrix of this disease. Several studies, including two studies from Daniela Lössner’s team (Advanced Healthcare Materials 2022 doi: 10.1002/adhm.202201907, Nature Communications 2021 doi: 10.1038/s41467-021-25921-9), highlight the key role of specific matrix components in driving cell functions, emphasizing the need to design cell-instructive matrices.

    The problem: The extracellular matrix of pancreatic cancer is very complex and consists of many fibrotic proteins, including collagens, proteoglycans, laminins and fibronectin. In tumour tissues, the remodelling of the matrix induces the growth of cancer cells, which in turn interact with the matrix through integrins, a major class of cell surface and adhesion receptors (Figure 1A). Integrins facilitate cell-cell and cell-matrix interactions in the tumour microenvironment and guide signalling pathways, leading to disease progression and metastasis (Figure 1B). Thus, integrins have become an important target for anti-cancer therapeutics, which are tested in clinical trials. Despite the critical role of the adhesion requirements in guiding cell behaviour, a robust engineering approach to mimic the specific adhesion profile of cancer cells and instruct the disease-relevant integrin profile in experimental models is missing.

    The solution: ‘Design2Guide’ proposes a rational design strategy of a disease-relevant 3D cancer model based on two fundamental aspects: firstly, a minimalistic synthetic matrix that incorporates essential matrix components of tumour tissues in the form of polyethylene glycol hydrogels, and secondly, the capacity to instruct integrin profiles and subsequently activate signalling pathways. The ‘Design2Guide’ platform addresses the need for developing cell-instructive matrices to deconstruct tumour tissues in order to studying the cell-cell and cell-matrix interactions present in people diagnosed with pancreatic cancer. The research will benefit scientists in the field of tumour tissue engineering, an interdisciplinary research area combining tissue engineering and cell biology (Nature Reviews Materials 2023 doi:10.1038/s41578-023-00535-3).

    The long-term impact of the new platform will be a generalized approach for targeting tissue-level adhesion requirements in synthetic matrices, enabling new knowledge about how to treat solid tumours.


    Contact for scientific information:

    Prof. Daniela Loessner
    loessner@ipfdd.de


    Original publication:

    Advanced Healthcare Materials, doi: 10.1002/adhm.202201907
    Nature Communications, doi: 10.1038/s41467-021-25921-9
    Nature Reviews Materials, doi:10.1038/s41578-023-00535-3


    Images

    Scheme
    Scheme
    .
    Daniela Lössner


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Medicine
    transregional, national
    Contests / awards, Research projects
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).