idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/11/2023 11:18

Evolving Elegance: TU Dresden Scientists Connect Beauty and Safeguarding in Ammonoid Shells

Magdalena Gonciarz Pressestelle
Technische Universität Dresden

    With 350 million years of evolution culminating in almost two centuries of scientific discourse, a new hypothesis emerges from the B CUBE – Center for Molecular Bioengineering at TU Dresden University of Technology. B CUBE researchers propose a new explanation for why ammonoids evolved a highly elaborate, fractal-like geometry within their shells. Their analysis shows that the increasing complexity of shell structures provided a distinct advantage by offering improved protection against predators. The findings are published in the journal Science Advances.

    Ammonoids are a group of extinct marine mollusk animals that are now an iconic fossil group often collected by amateurs. Over 350 million years of evolution, ammonoids developed increasingly elaborate shells with fractal-like geometry. For nearly 200 years, scientists have debated the reason why these animals show a trend of increasing complexity in their shell structures. Dr. Robert Lemanis and Dr. Igor Zlotnikov from the B CUBE – Center for Molecular Bioengineering at TU Dresden created mechanical simulations of theoretical and computed tomography-based models to unveil a potential explanation: the intricate architecture of these shells may have been nature's ingenious defense strategy against a wide array of predators.

    “Over the course of 350 million years of evolution, ammonoids repeatedly evolved shells with increasingly complex inner walls. The persistence and repetitiveness of this trend imply some driving force; the question that has long remained unanswered is: what driving force? Opposition to water pressure, muscle attachments, respiration, Cartesian devils. All of these have been proposed as explanations for this trend but evidence for them is scarce. So we decided to explore a neglected idea,” explains Dr. Robert Lemanis, researcher in Dr. Zlotnikov’s group at the B CUBE.

    The team's findings propose a fascinating correlation between the evolving complexity of the ammonoid shell and its resilience against external forces. As these ancient creatures roamed the oceans, their shells shielded them against predators and other environmental factors. The intricate inner structures provided crucial reinforcement, making it progressively harder for predators to crack them.

    “Consider that the ammonoid shell was a relatively thin structure and once it was fractured, the animal could not repair it. A robust shell – one that can resist the damage – provided higher chances of survival,” explains Dr. Lemanis.

    In essence, the shell's evolution could be a story of survival against the odds. Through countless years of adaptation and innovation, these ancient creatures crafted their defenses with remarkable precision. This new insight from the B CUBE researchers offers us a glimpse into the distant past, where the beauty of nature intertwines with the relentless pressures of survival.

    “Our work bridges biology and engineering, underscoring how animals harness the power of fractal morphology to design more robust biomaterials. It can provide inspiration for resilient structural designs,” summarizes Dr. Zlotnikov, research group leader at the B CUBE.

    About B CUBE
    B CUBE – Center for Molecular Bioengineering was founded as a Center for Innovation Competence within the initiative “Unternehmen Region” of the German Federal Ministry of Education and Research. It is part of the Center for Molecular and Cellular Bioengineering (CMCB). B CUBE research focuses on the investigation of living structures on a molecular level, translating the ensuing knowledge into innovative methods, materials and technologies.
    Web: www.tu-dresden.de/cmcb/bcube


    Contact for scientific information:

    Dr. Robert Lemanis
    Tel.: +49 351 463-44272
    E-mail: Robert_Evan.Lemanis@tu-dresden.de


    Original publication:

    Robert Lemanis, Igor Zlotnikov: Fractal-like geometry as an evolutionary response to predation? Science Advances
    Link: https://doi.org/10.1126/sciadv.adh0480


    More information:

    https://tud.link/xnfz Website of the research group of Dr. Igor Zlotnikov


    Images

    A Kosmoceras ammonite fossil. A CT scan render
    A Kosmoceras ammonite fossil. A CT scan render

    Robert Lemanis


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).