idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/13/2023 18:46

Rissdetektion mittels Schallemission: Anwendungsforschung an Bauteilen der Federnindustrie erfolgreich

Dipl.-Ing. Kerstin Baldauf Presse- und Informationsstelle
Hochschule Wismar, University of Applied Sciences: Technology, Business and Design

    Am 31. August 2023 versammelten sich Expert_innen aus der Industrie sowie Vertreter_innen des Verbands der deutschen Federnindustrie (VDFI) im Technologie- und Forschungszentrum Wismar (TFZ), um die beeindruckenden Ergebnisse eines Forschungsprojekts zu feiern, das die Welt der Federnherstellung einen entscheidenden Schritt voranbringt. Das Projekt mit dem Titel "Rissdetektion mittels Schallemission in der Anwendung an Bauteilen der Federnindustrie" (AiF/IGF 20846) wurde am Bereich Maschinenbau/Verfahrens- und Umwelttechnik der Fakultät für Ingenieurwissenschaften der Hochschule Wismar durchgeführt.

    Unter der Leitung von Professorin Dr.-Ing. Daniela Schwerdt und dem wissenschaftlichen Mitarbeiter Mathias Lorenz hatte des Forschungsteam Maschinenbau/Werkstoffkunde seit Februar 2020 an dem anspruchsvollen praxisnahen Projekt gearbeitet.

    Klar definierte Ziele
    Das Hauptziel dieses mit 250.000 Euro geförderten Projektes war es, ein In-situ-Monitoring der Rissinitiierung und des -wachstums während des Federwindens mithilfe der akustischen Emission (AE) zu entwickeln. Es sollte die Auflösungsgrenze und die Einflussfaktoren auf die AE-Signale ermittelt und nach Möglichkeit quantifiziert werden. Ein weiteres wichtiges Ziel bestand darin, geeignete Analyseketten in der anlagenspezifischen Software zu entwickeln, um die Detektion und eindeutige Zuordnung der in situ AE-Signale zu verschiedenen Schädigungsmechanismen zu ermöglichen. Die gewonnenen Messwerte sollten Rückschlüsse auf den Schadensmechanismus zulassen, so dass Abhilfemaßnahmen direkt definiert und kosteneffizient in der Produktion umgesetzt werden können.

    Ergebnisse ermöglichen schnelle und kostengünstige Umsetzung
    Die Forschung umfasste sowohl labortechnische Untersuchungen an hochfesten Stahldrähten als auch Untersuchungen im industriellen Umfeld. Die Ergebnisse waren vielversprechend und zeigen, dass die akustische Emissionstechnik in der Lage ist, Rissentstehung und -wachstum in situ während der Federnherstellung bei hohen Umformgeschwindigkeiten sicher zu detektieren. Darüber hinaus konnte nachgewiesen werden, dass die AE-Analytik zur Untersuchung verschiedener Schädigungsmechanismen und Brucharten eingesetzt werden konnte. Dank Mustererkennung war es möglich, interkristallinen Spaltbruch und transkristallinen duktilen Wabenbruch in In-situ-Anwendungen zu unterscheiden, insbesondere bei wasserstoffinduzierter Rissbildung.

    Gelungener Wissenstransfer
    Die Teilnehmenden der Abschlussveranstaltung diskutierten begeistert die Ergebnisse und betonten den erfolgreichen Transfer dieser Technologie in die Industrie. Das Forschungsprojekt wurde mit vollständiger Erfüllung seiner Ziele abgeschlossen und wird die Federnherstellung sowie die damit verbundenen Industriezweige weiter voranbringen. Außerdem wurde die Übertragbarkeit auf andere Legierungssysteme und Umformprozesse in den Fokus gerückt.
    Die Abschlussveranstaltung war nicht nur ein wissenschaftlicher Erfolg, sondern auch ein Beweis dafür, wie wichtig persönliche Treffen und Diskussionen für den Wissenstransfer und die Zusammenarbeit zwischen Wissenschaft und Industrie sind. Dieses Projekt zeigt, wie Forschung und Innovation dazu beitragen können, die Herstellung von Produkten effizienter und betriebssicher zu gestalten und unterstreicht die Bedeutung der Zusammenarbeit zwischen verschiedenen Akteuren in unserer modernen Welt.


    Contact for scientific information:

    Projektbearbeiter Mathias Lorenz
    Telefon: 03841 753-75 01
    E-Mail: mathias.lorenz@hs-wismar.de
    oder
    Projektleiterin Prof. Dr.-Ing. Daniela Schwerdt
    (Prorektorin Forschung)
    Telefon: 03841 753-72 54
    E-Mail: daniela.schwerdt@hs-wismar.de


    Original publication:

    Konferenzbeitrag: M. Lorenz, J. Heidemann, M. Salih, D. Schwerdt: Application of sound measurements for quality control of wires during the production of technical springs. International conference on steels in cars and trucks, Milan, Italy, 2022.


    More information:

    https://t1p.de/ag-werkstoffe Arbeitgruppe Werkstoffe an der Fakultät für Ingenieurwissenschaften der Hochschule Wismar
    https://t1p.de/MI-Riss Medieninfo mit Bildmaterial


    Images

    Abschlusstreffen des projektbegleitendenden Ausschusses im Forschungsprojekt „Rissdetektion mittels Schallemission“ im Technologie- und Forschungszentrum Wismar mit der Projektleiterin Prof. Dr. Daniela Schwerdt und dem -bearbeiter Mathias Lorenz
    Abschlusstreffen des projektbegleitendenden Ausschusses im Forschungsprojekt „Rissdetektion mittels ...

    Hochschule Wismar


    Criteria of this press release:
    Business and commerce, Journalists
    Electrical engineering, Materials sciences, Mechanical engineering
    transregional, national
    Research projects, Transfer of Science or Research
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).