idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/18/2023 12:02

Einblick in die dreidimensionale Struktur von Kilonovae

Dr. Ingo Peter Öffentlichkeitsarbeit
GSI Helmholtzzentrum für Schwerionenforschung GmbH

    Eine neue 3D-Computersimulation des Lichts, das nach der Verschmelzung zweier Neutronensterne ausgesendet wird, hat eine ähnliche Abfolge von spektroskopischen Merkmalen ergeben wie eine real beobachtete Kilonova. „Die einmalige Übereinstimmung zwischen unseren Simulationen und den Beobachtungen von Kilonova AT2017gfo zeigt, dass wir weitgehend verstehen, was bei der Explosion und in der Folgezeit passiert ist“, sagt Lukes Shingles, Wissenschaftler bei GSI/FAIR und Hauptautor der Veröffentlichung in „The Astrophysical Journal Letters“.

    Jüngste Beobachtungen, die sowohl Gravitationswellen als auch sichtbares Licht kombinieren, weisen darauf hin, dass Neutronensternenverschmelzungen der Hauptort der Elementproduktion sein könnten. Die Forschung wurde von Wissenschaftler*innen des GSI Helmholtzzentrums für Schwerionenforschung und der Queen's University Belfast durchgeführt.

    Die Wechselwirkungen zwischen Elektronen, Ionen und Photonen innerhalb des ausgestoßenen Materials einer Neutronensternverschmelzung bestimmen das Licht, das wir mithilfe von Teleskopen beobachten können. Diese Vorgänge und damit das emittierte Licht können mit Computersimulationen des Strahlungstransfers modelliert werden. Forschende haben kürzlich zum ersten Mal eine dreidimensionale Simulation erstellt, die die Verschmelzung von Neutronensternen, die Nukleosynthese durch Neutroneneinfang, die durch radioaktiven Zerfall deponierte Energie und den Strahlungstransfer mit Dutzenden von Millionen atomarer Übergänge schwerer Elemente in sich schlüssig abbildet.

    Als 3D-Modell kann das beobachtete Licht für jede Blickrichtung vorhergesagt werden. Bei Betrachtung nahezu senkrecht zur Bahnebene der beiden Neutronensterne (wie es die Beobachtungen für die Kilonova AT2017gfo nahelegen), sagt das Modell eine Abfolge von Spektralverteilungen voraus, die den Beobachtungen für AT2017gfo bemerkenswert ähnlich sehen. „Die Forschung in diesem Bereich wird uns helfen, den Ursprung von Elementen, die schwerer als Eisen sind (wie Platin und Gold), zu verstehen, die hauptsächlich durch den schnellen Neutroneneinfangprozess bei der Verschmelzung von Neutronensternen entstanden sind“, sagt Shingles.

    Etwa die Hälfte der Elemente, die schwerer als Eisen sind, entstehen in einer Umgebung mit extremen Temperaturen und Neutronendichten – z.B. wenn zwei Neutronensterne miteinander verschmelzen. Die daraus resultierende Explosion führt zum Auswurf von Materie mit den geeigneten Bedingungen, um durch eine Abfolge von Neutroneneinfang und Betazerfall instabile, neutronenreiche schwere Kerne zu erzeugen. Diese Kerne zerfallen bis zur Stabilität und setzen dabei Energie frei, die einen explosiven Kilonova-Transienten antreibt, eine helle Lichtemission, die nach etwa einer Woche schnell wieder verblasst.

    Die 3D-Simulation kombiniert mehrere Bereiche der Physik, darunter das Verhalten von Materie bei hoher Dichte, die Eigenschaften instabiler schwerer Kerne und die Wechselwirkungen zwischen Atom und Licht bei schweren Elementen. Weitere Herausforderungen bleiben bestehen, wie z. B. die Berücksichtigung der Geschwindigkeit, mit der sich die Spektralverteilung ändert, und die Beschreibung von Material, das zu späten Zeiten ausgestoßen wird. Künftige Fortschritte in diesem Bereich werden die Präzision erhöhen, mit der wir Merkmale in den Spektren vorhersagen und verstehen können, und sie werden unser Verständnis der Bedingungen fördern, unter denen schwere Elemente synthetisiert wurden. Ein grundlegender Bestandteil dieser Modelle sind qualitativ hochwertige atomare und nukleare experimentelle Daten, wie sie die FAIR-Anlage liefern wird.


    Original publication:

    https://iopscience.iop.org/article/10.3847/2041-8213/acf29a


    Images

    Ergebnis der Kilonova-3D-Simulation.
    Ergebnis der Kilonova-3D-Simulation.

    © Luke J. Shingles et al 2023 ApJL 954 L41

    Künstlerische Darstellung einer Kilonova: Zwei Neutronensterne im Moment ihrer Verschmelzung.
    Künstlerische Darstellung einer Kilonova: Zwei Neutronensterne im Moment ihrer Verschmelzung.

    © Dana Berry SkyWorks Digital, Inc.


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).