idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/13/2023 17:00

Cycle of fasting and feeding is crucial for healthy ageing: Genetic switch rescues old fish from fasting trap

Dr. Maren Berghoff Communications
Max-Planck-Institut für Biologie des Alterns

    Health is thought to be improved by fasting interventions, which involve alternating periods of fasting and feeding. But this doesn't work as well in old animals. By studying the short-lived killifish, researchers at the Max Planck Institute for Biology of Ageing in Cologne have shown that older fish deviate from a youthful fast and refeed cycle, and instead enter a state of perpetual fasting, even when feeding. However, the benefits of refeeding after fasting in old killifish can be restored by genetically activating a specific subunit of AMP kinase. These fish experienced improved health and longevity, indicating that both fasting and refeeding are needed to confer health benefits.

    It has already been shown in many model organisms that a reduced diet, either through calorie restriction or periods of fasting, has a positive effect on health. However, it is difficult for humans to eat less throughout life. In order to find the most opportune timing to fasting, researchers introduced fasting interventions at different ages, finding that these interventions in older age do not yield the same benefits as they do in younger animals.

    A team of researchers from Cologne, Germany, has now investigated the age-related fasting effects in killifish. Killifish are rapid-aging fish that go from young to old in just a few months. The researchers either fasted young and old fish for a few days or fed them twice a day. They found that the visceral adipose (fat) tissue of old fish became less responsive to feeding. "The adipose tissue is known to react most strongly to variations in food intake and has an important role in metabolism. That's why we looked at it more closely," explains Roberto Ripa, lead author of the study.

    Alternation between fasting and eating is crucial

    The researchers found that the inability to respond to the feeding phase set the fat tissue of old fish in a permanent state of fasting: energy metabolism is shut down, protein production is reduced, and tissue is not renewed. "We had assumed that old fish would not be able to switch to fasting after feeding. Surprisingly, the opposite was true, the old fish were in a permanent fasting state, even while eating food" says Adam Antebi, Director at the Max Planck Institute for Biology of Ageing and leader of the study.

    Adipose tissue in a permanent fasting state

    When the researchers looked more closely at how the fatty tissue of the old fish differed from that of the young, they came across a specific protein called AMP kinase. This kinase is a cellular energy sensor, and is made up of different subunits, of which the activity of the γ1 subunit decreases with age. When the scientists increased the activity of this subunit through genetic modification, the fasting-like state was counteracted and the old fish were healthier and even lived longer.

    Human ageing

    Interestingly, a link was also found between the γ1-subunit and human ageing. Significantly lower levels of the particular subunit were measured in samples from elderly patients. In addition, it was possible to show in the human samples: the less frail a person is in old age, the higher the level of the γ1-subunit.

    "Of course, we don't yet know whether in humans the γ1-subunit is actually responsible for healthier ageing. In the next step, we will try to find molecules that activate precisely this subunit and investigate whether we can use them to positively influence ageing," explains Adam Antebi.

    The research for this study was conducted at the Max Planck Institute for Biology of Ageing and was co-funded by the CECAD Cluster of Excellence for Aging Research.


    Contact for scientific information:

    Prof. Dr. Adam Antebi, Max Planck Director, Max Planck Institute for Biology of Ageing, aantebi@age.mpg.de


    Original publication:

    Roberto Ripa, Eugene Ballhysa, Joachim D. Steiner, Raymond Laboy, Andrea Annibal, Nadine Hochhard, Christian Latza, Luca Dolfi, Chiara Calabrese, Anna M. Meyer, Maria Cristina Polidori, Roman-Ulrich Müller, Adam Antebi
    Refeeding-associated AMPKγ1 complex activity is a hallmark of health and longevity
    Nature Ageing, 10 November 2023
    https://www.nature.com/articles/s43587-023-00521-y


    More information:

    https://www.age.mpg.de/faq-ageing
    https://www.age.mpg.de/antebi


    Images

    Killifish age in fast motion. The bright colours of their youth fade after just a few months.
    Killifish age in fast motion. The bright colours of their youth fade after just a few months.
    Katharina Link
    ©K. Link / Max Planck Institute for Biology of Ageing


    Criteria of this press release:
    Journalists
    Biology, Nutrition / healthcare / nursing
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).