idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/03/2024 20:00

Surprise! – How the brain learns to deal with the unexpected

Dr. Angelika Jacobs Kommunikation
Universität Basel

    For children, the world is full of surprises. Adults, on the other hand, are much more difficult to surprise. And there are complex processes behind this apparently straightforward state of affairs. Researchers at the University of Basel have been using mice to decode how reactions to the unexpected develop in the growing brain.

    Babies love playing peekaboo, continuing to react even on the tenth sudden appearance of their partner in the game. Recognizing the unexpected is an important cognitive ability. After all, new can also mean dangerous.

    The exact way in which surprises are processed in the brain changes as we grow, however: unusual stimuli are much more quickly categorized as “important” or “uninteresting”, and are significantly less surprising the second and third time they appear. This increased efficiency makes perfect sense: new stimuli may gain our attention, but do not cause an unnecessarily strong reaction that costs us energy. While this may appear trivial at first, so far there has been very little research into this fact in the context of brain development.

    Experiments with young mice conducted by Professor Tania Barkat’s research team have now begun to decode how the developing brain processes surprising sounds and what changes as we grow up. The researchers have reported on their findings in the journal Science Advances.

    Strange sounds

    In their experiments, the researchers used sequences of sounds in which a different tone was heard at irregular intervals in between a series of identical ones. At the same time, they recorded the animals’ brain waves. This process is known as the “oddball paradigm”, and is used by health professionals for purposes such as the diagnosis of schizophrenia.

    Using these measurements, the researchers were able to understand how the reaction of different brain regions to the change of tone developed over time in the young mice. This reaction was initially very strong, but decreased as the relevant brain region matured, to a level comparable to that of measurements in adult animals. This development does not take place simultaneously in the various areas of the brain that process sound, however.

    A region known as the inferior colliculus, located at the beginning of the path from the auditory nerve to the auditory cortex, was already fully mature in the animals at the age of 20 days, the earliest point in time studied by the team. A second site, the auditory thalamus, only showed an “adult” reaction to the differing tone at the age of 30 days.

    Development in the cerebral cortex itself, the “primary auditory cortex”, took even longer, until day 50. “This development of the surprise reaction thus begins in the periphery and ends in the cerebral cortex,” says study leader Tania Barkat. The cerebral cortex therefore matures much later than expected – in human years, this would equate roughly to the early 20s.

    No development without experience

    The researchers also observed that experiences play a key role in the development of the surprise response in the cerebral cortex. If the mice were reared in a noise-neutral environment, the processing of unexpected sounds in the auditory cortex was significantly delayed.

    One possible explanation for this is that the brain – and the cerebral cortex in particular – forms an internal image of the world during growth, which it then compares with external stimuli. Anything that does not correspond to this “worldview” is a surprise, but may also result in an update. “Without experience with sounds, however, the cerebral cortex in these mice is unable to develop such a model of the world,” says neuroscientist Barkat. As a result, the animal is unable to categorize sounds properly into “familiar” and “unexpected”.


    Contact for scientific information:

    Prof. Dr. Tania Rinaldi Barkat, University of Basel, Department of Biomedicine, phone +41 61 207 16 38, email: tania.barkat@unibas.ch


    Original publication:

    Patricia Valerio, Julien Rechenmann, Suyash Joshi, Gioia De Franceschi, Tania Rinaldi Barkat
    Sequential maturation of stimulus-specific adaptation in the mouse lemniscal 4 auditory system
    Science Advances (2024), doi: 10.1126/sciadv.adi7624
    https://doi.org/10.1126/sciadv.adi7624


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).