idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/31/2024 09:00

Firing Nerve Fibers in the Brain Are Supplied with Energy on Demand

Kurt Bodenmüller Kommunikation
Universität Zürich

    To rapidly transmit electrical signals in the brain, the long nerve fibers are insulated by specialized cells called oligodendrocytes. These cells also respond to the electrical signals of active nerve fibers and provide them with energy on demand, as UZH researchers have discovered. If this process, regulated by potassium, is disabled in mice, the nerve fibers are severely damaged as the animals age – resembling the defects of neurodegenerative diseases.

    Brain function depends on the swift movement of electrical signals along axons, the long extensions of nerve cells that connect billions of brain cells. The nerve fibers are insulated by a fatty layer called myelin, which is produced by specialized cells called oligodendrocytes. These cells wrap around and insulate nerve fibers ensuring the rapid and efficient transmission of signals that is essential for brain function.

    Oligodendrocytes sense and respond to the electrical signals

    Now, a team of neuroscientists led by Aiman Saab at the Institute of Pharmacology and Toxicology at the University of Zurich (UZH) has discovered a new central function of these myelin-forming cells in the mouse brain. “We found that oligodendrocytes not only detect the signals from active nerve fibers, but also respond to them by immediately accelerating their consumption of glucose, a primary energy source,” says Saab. In this way, the oligodendrocytes deliver energy-rich molecules to the rapidly firing axons to support their dynamic energy needs.

    Potassium is key signal that activates oligodendrocytes

    To understand how electrically active axons communicate with their surrounding oligodendrocytes, the researchers studied the mouse optic nerve, an ideal pathway for stimulating and monitoring the electrical activity of myelinated axons. To trigger axonal firing and to observe how oligodendrocytes respond to this activity, they used tiny biosensors: engineered proteins that serve as microscopic detectors of molecular changes. “Using a variety of chemicals and inhibitors, we were able to show that potassium, released by axons during firing, is the key signal that activates the oligodendrocytes,” says Zoe Looser, the first author of the study.

    Missing potassium channels lead to nerve fiber damage

    The researchers also identified a specific potassium channel called “Kir4.1” as a key player in the communication between nerve fibers and oligodendrocytes. To study their role, the team used genetically modified mice that lacked these channels in their oligodendrocytes. In these mice, axons surrounded by oligodendrocytes without these potassium channels showed reduced lactate levels, a key byproduct of glucose metabolism, and a diminished response in lactate surge upon activation. “These changes were associated with reduced glucose metabolism in nerve fibers and ultimately led to severe axon damage as the mice aged,” adds Looser.

    How age and diseases affect nerve fiber health

    The findings underscore the essential role of oligodendrocytes in regulating the metabolic processes within axons that are vital for sustaining healthy brain connections. Glucose not only fuels nerve fibers but also supports protective mechanisms against oxidative stress. “Disruptions in axonal glucose metabolism due to oligodendrocyte dysfunction could lead to nerve damage, which is a concern in aging and several neurodegenerative diseases, such as multiple sclerosis and Alzheimer’s disease,” says Aiman Saab. The next step is to understand how the regulation of glucose by oligodendrocytes affects specific functions of the nerve fibers, with a particular focus on their health during aging and neurological disorders.


    Contact for scientific information:

    Prof. Dr. Aiman S. Saab
    Institute of Pharmacology and Toxicology
    University of Zurich
    Phone: +41 44 635 59 76
    E-mail: asaab@pharma.uzh.ch

    Dr. Zoe Looser
    Institute of Pharmacology and Toxicology
    University of Zurich
    Phone: +41 44 635 59 65
    E-mail: zoe.looser@pharma.uzh.ch


    Original publication:

    Zoe J. Looser, et. al. Oligodendrocyte-axon metabolic coupling is mediated by extracellular K+ and maintains axonal health. Nature Neuroscience. 24 January 2024. DOI: 10.1038/s41593-023-01558-3


    More information:

    https://www.news.uzh.ch/en/articles/media/2024/Oligodendrocytes.html


    Images

    Querschnitt von Nervenfasern des Sehnervs der Maus
    Querschnitt von Nervenfasern des Sehnervs der Maus
    Zoe Looser and Aiman Saab
    University of Zurich

    Single oligodendrocyte
    Single oligodendrocyte
    Zoe Looser and Aiman Saab
    University of Zurich


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).