idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/05/2024 14:18

Wissenschaftler der Uni Bayreuth nutzen künstliche Intelligenz in der Astrophysik

Jennifer Opel Pressestelle
Universität Bayreuth

    Bayreuther Wissenschaftler erforschen die Struktur und das Langzeitverhalten von Galaxien mithilfe mathematischer Modelle, basierend auf Einsteins Relativitätstheorie. Ihr innovativer Ansatz nutzt ein tiefes neuronales Netz zur schnellen Vorhersage der Stabilität von Galaxie-Modellen. Dieses auf künstlicher Intelligenz basierende Verfahren ermöglicht eine effiziente Verifizierung oder Falsifizierung astrophysikalischer Hypothesen in Sekunden.

    Das Forschungsziel von Dr. Sebastian Wolfschmidt und Christopher Straub ist die Untersuchung der Struktur und des Langzeitverhaltens von Galaxien. „Da diese nicht vollständig durch astronomische Beobachtungen analysiert werden können, nutzen wir mathematische Modelle von Galaxien“, erklärt Christopher Straub, Doktorand am Lehrstuhl Mathematik VI an der Universität Bayreuth. „Um dabei zu berücksichtigen, dass die meisten Galaxien ein schwarzes Loch im Zentrum beinhalten, beruhen unsere Modelle auf Albert Einsteins allgemeiner Relativitätstheorie, welche Gravitation als Krümmung einer vierdimensionalen Raumzeit beschreibt.“

    Mathematiker und Astrophysiker erforschen seit Jahrzehnten die Eigenschaften solcher Galaxie-Modelle, wobei viele Fragen noch immer offen sind. Als Hilfsmittel zur Klärung dieser Fragen haben Straub und Wolfschmidt ein tiefes neuronales Netz implementiert, was einen komplett neuartigen Ansatz in diesem Forschungsbereich darstellt. Neuronale Netzwerke sind leistungsstarke Rechenmodelle, deren Struktur von der des menschlichen Gehirns inspiriert ist. Sie werden im Bereich der künstlichen Intelligenz genutzt, um komplexe Strukturen in großen Datenmengen zu erkennen. „Das neuronale Netz kann vorhersagen, welche Modelle von Galaxien in der Realität existieren können und welche nicht“, sagt Dr. Sebastian Wolfschmidt, Wissenschaftlicher Mitarbeiter am Lehrstuhl Mathematik VI. „Das neuronale Netz liefert dabei eine bedeutend schnellere Vorhersage als die in der Vergangenheit verwendeten numerischen Simulationen. So lassen sich astrophysikalische Hypothesen, die über die vergangenen Jahrzehnte aufgestellt wurden, innerhalb weniger Sekunden verifizieren oder falsifizieren.“

    Ihre Erkenntnisse haben Wolfschmidt und Straub nun in der Fachzeitschrift „Classical and Quantum Gravity“ vorgestellt. „Wir befassen uns seit 2019 am Lehrstuhl Mathematik VI in der Arbeitsgruppe Prof. Dr. Gerhard Rein mit diesen Fragestellungen. Nach verschiedensten analytischen und numerischen Untersuchungen haben wir vor ungefähr einem Jahr erkannt, dass der Einsatz von maschinellem Lernen für einige unserer Probleme besonders hilfreich sein kann. Seitdem haben wir das beschriebene tiefe neurale Netz entwickelt, und haben auch bereits Pläne für weitere Einsatzmöglichkeiten ähnlicher Methoden“, sagt Straub.

    Die Berechnungen der Bayreuther Mathematiker wurden vom Supercomputer des „Keylab HPC“ an der Universität Bayreuth durchgeführt und das Projekt entwickelte sich aus einer Zusammenarbeit mit dem Lehrstuhl für Angewandte Informatik II - Parallele und verteilte Systeme.


    Contact for scientific information:

    Christopher Straub
    Doktorand am Lehrstuhl für Mathematik VI
    Mail: christopher.straub@uni-bayreuth.de
    Phone: +49 (0)921 55-3284


    Original publication:

    Straub, C., Wolfschmidt, S., Predicting the stability of star clusters in general relativity, Classical and Quantum Gravity (2024). https://doi.org/10.1088/1361-6382/ad228a


    Images

    Dr. Sebastian Wolfschmidt (hinten) und Christopher Staub arbeiten gemeinsam an der Berechnung des Langzeitverhaltens von Galaxien.
    Dr. Sebastian Wolfschmidt (hinten) und Christopher Staub arbeiten gemeinsam an der Berechnung des La ...
    Lisa Krügel
    Universität Bayreuth


    Criteria of this press release:
    Journalists
    Mathematics, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).