idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/08/2024 11:23

KI-Modell als Diabetes-Frühwarnsystem beim Autofahren

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    Nur anhand des Fahrverhaltens und der Bewegungen von Kopf und Augen erkennt das neu entwickelte Tool niedrige Blutzuckerspiegel.

    Niedrige Blutzuckerwerte (Hypoglykämie) sind eine der gefährlichsten Komplikationen bei Diabetes und stellen ein hohes Risiko bei kognitiv und motorisch anspruchsvollen Aufgaben dar, beispielsweise beim Autofahren. Der Nutzen bisher entwickelter Methoden zur Erkennung einer Hypoglykämie ist durch lange Diagnosezeiten, Invasivität, begrenzte Verfügbarkeit und hohe Kosten eingeschränkt. Eine kürzlich im Fachmagazin NEJM AI publizierte Studie von Forschenden der LMU in Zusammenarbeit mit dem Inselspital Bern, der ETH Zürich und der Universität St. Gallen eröffnet einen neuen Weg, eine Hypoglykämie während des Autofahrens zu erkennen.

    Für ihre Studie sammelten die Wissenschaftlerinnen und Wissenschaftler Daten von 30 Diabetikern, während diese ein echtes Fahrzeug steuerten. Für jede Person wurden die Daten einmal bei normalem Blutzuckerspiegel und einmal bei Hypoglykämie aufgezeichnet. Zu diesem Zweck wurden die Testpersonen von den im Auto anwesenden medizinischen Fachkräften gezielt in einen Zustand niedrigen Blutzuckers versetzt. Die gesammelten Daten umfassten Fahrsignale wie zum Beispiel die Geschwindigkeit des Fahrzeugs sowie Kopf- und Blickbewegungsdaten, beispielsweise die Geschwindigkeit der Augenbewegungen.

    Anschließend entwickelten sie ein neuartiges Modell basierend auf maschinellem Lernen (ML), das hypoglykämische Phasen automatisch sicher erkennen kann, und zwar allein anhand der routinemäßig erfassten Daten zum Fahrverhalten und den Kopf- und Blickbewegungen. „Diese Technologie könnte als Frühwarnsystem im Auto dienen und die Person am Steuer in die Lage versetzen, die notwendigen Vorkehrungen zu treffen, bevor Hypoglykämie-Symptome ihre Fähigkeit sicher zu fahren beeinträchtigen“, sagt Simon Schallmoser, Doktorand am Institute of AI in Management der LMU und einer der beteiligten Forscher.

    Das neu entwickelte ML-Modell schnitt auch dann gut ab, wenn nur Kopf- und Blickbewegungsdaten verwendet wurden, was für zukünftige selbstfahrende Autos von entscheidender Bedeutung ist. Professor Stefan Feuerriegel, Leiter des Institute of AI in Management und Projektpartner, erklärt: „Diese Studie zeigt nicht nur das Potenzial von KI zur Verbesserung der individuellen Gesundheitsversorgung, sondern auch ihre Rolle bei der Sicherheit im öffentlichen Straßenverkehr.“


    Contact for scientific information:

    Simon Schallmoser, M.Sc.
    Institute of Artificial Intelligence (AI) in Management
    Ludwig-Maximilians-Universität München
    schallmoser@lmu.de


    Original publication:

    Vera Lehmann, Thomas Zueger, Martin Maritsch, Michael Notter, Simon Schallmoser, Caterina Bérubé, Caroline Albrecht, Mathias Kraus, Stefan Feuerriegel, Elgar Fleisch, Tobias Kowatsch, Sophie Lagger, Markus Laimer, Felix Wortmann & Christoph Stettler: Machine Learning to Infer a Health State Using Biomedical Signals — Detection of Hypoglycemia in People with Diabetes while Driving Real Cars. New England Journal of Medicine AI 2024


    Images

    Criteria of this press release:
    Journalists
    Economics / business administration, Information technology, Medicine, Nutrition / healthcare / nursing, Social studies
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).