idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/14/2024 08:40

When 3D-printed mushrooms make music: mycelium as a sustainable high-tech material in speaker construction

Andreas Hemmerle Presse und Medien
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU

    Mushroom mycelium is a renewable resource. It has been essential in pharmacy for many years. Yet, mushroom mycelium has even more potential. As a biodegradable material, it can sustainably replace various materials, such as animal leather, packaging materials made from wood, cardboard, or Styrofoam®, and insulation wool. A team of researchers at Fraunhofer IWU is now exploring another application for mushroom mycelium material: for components integrating complex functions in high-quality transmission line speakers, with the aim to enhance their sound even further.

    The ambitious goal is to process living mycelium in 3D printing and then deliberately influence its growth to achieve sound-reflecting and sound-absorbing properties in one process. Research findings on the influenceability (or controllability) of mushroom mycelium regarding the specific requirements in speaker construction are highly promising. Characteristics of the material can be adjusted to the respective application during mycelium cultivation by influencing environmental conditions. This way, foam-like structures can be used for sound absorption or damping unwanted vibrations, while solid and smooth properties are suitable for sound reflection. Mycelium is thus a good choice for both insulation material and housing.

    So-called transmission line speakers rely on a sound outlet opening in the housing for good bass and reduced resonances (natural vibrations) of the speaker housing. This opening connects to a tube of up to three meters inside the housing. Such a tube must be folded multiple times in the speaker box to fit, resulting in a complex geometry. The high manufacturing costs alone have deterred many manufacturers from this design principle. The IWU team elegantly solves this problem by tool-less printing of functional components and speaker housings. Additionally, this approach reduces the number of adhesive and other joining connections. Overall, 3D manufacturing requires significantly fewer process steps than conventional production methods.

    Further cost arguments speak for mushroom mycelium as a material. Recycling organic substrates as the basis of the material is as cost-effective as processing with low energy consumption. Mushroom mycelium occurs in large quantities in the soil. It is also extractable from organic materials such as straw, wood residues, sawdust, reed residues, or brewery by-products (spent grains).

    Lastly, ecological arguments speak for this material. While machining manufacturing processes such as cutting, milling, or drilling generate a lot of waste, it is the opposite with 3D printing of mushroom mycelium: the printable material comes from organic residues; only what is needed is processed. The material is entirely non-toxic, comparable to edible mushrooms, and fully biodegradable.

    The basis for the "MYCOUSTICS" project is previous fundamental research at the institute on the cultivation and processing of mycelium material. In addition, Fraunhofer IWU has comprehensive expertise in technical acoustics and additive manufacturing. The institute masters a wide range of methods for the analysis, simulation, and optimization of the entire chain of sound generation (excitation, transmission, sound radiation). It also leads the Fraunhofer competence field Additive Manufacturing with twenty Fraunhofer institutes nationwide. Another one of the IWU's research activities is functional integrated 3D printing for applications in various industries.

    From June 11 to 13, 2024, Fraunhofer IWU in Dresden will host BioM, the most significant international conference on Biomanufacturing and related fields. Sophia Elsner will present research results on the cultivation and printability of mushroom mycelium material at BioM.

    MYCOUSTICS is sponsored by the German Federal Ministry of Education and Research within the framework of the DATIpilot funding guideline.


    Contact for scientific information:

    Sophia Elsner
    Fraunhofer Institute for Machine Tools and Forming Technology IWU
    Nöthnitzer Straße 44
    D-01187 Dresden

    Phone +49 351 4772-2133
    sophia.elsner@iwu.fraunhofer.de


    Original publication:

    https://www.iwu.fraunhofer.de/en/press/PM-2024-When-3D-printed-mushrooms-make-mu...


    Images

    Material selection and design principles of the housing have a major impact on the sound quality of a speaker (symbolic image)
    Material selection and design principles of the housing have a major impact on the sound quality of ...

    © iStock/OleksandrKr

    Solid structures reflect sound and are thus ideal for transmission line structures in the housing
    Solid structures reflect sound and are thus ideal for transmission line structures in the housing

    © Fraunhofer IWU


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Biology, Economics / business administration, Environment / ecology, Materials sciences, Physics / astronomy
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).