idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/17/2024 10:33

Pflanzen beschränken den Einsatz von Tipp-Ex-Proteinen

Katrin Piecha Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

    Pflanzen verfügen über spezielle Korrektur-Moleküle, die Genabschriften nachträglich verändern können. Doch offensichtlich haben diese „Tipp-Ex-Proteine“ nicht in allen Bereichen der Zelle eine Arbeitserlaubnis. Stattdessen kommen sie ausschließlich in Chloroplasten und Mitochondrien zum Einsatz. Eine Studie der Universität Bonn erklärt nun, warum das so ist: Demnach würde der Korrekturmechanismus ansonsten auch fehlerfreie Abschriften verändern - mit fatalen Folgen für die Zelle. Die Ergebnisse sind jetzt in der Fachzeitschrift The Plant Journal erschienen.

    Pflanzenzellen enthalten eine ganze Reihe spezialisierter Strukturen, die sogenannten Organellen. Zwei besonders wichtige sind die Chloroplasten und die Mitochondrien. Chloroplasten setzen mit Hilfe von Lichtenergie Kohlendioxid und Wasser zu Sauerstoff und Zucker um. Mitochondrien kehren diesen Prozess gewissermaßen um: Sie „verbrennen“ Zucker und andere Verbindungen und machen dadurch die Energie für eine Vielzahl zellulärer Prozesse verfügbar.

    Beide Organellen sind in einem Punkt besonders: Sie verfügen über eigene Gene. Diese Erbanlagen sind Bauanleitungen für wichtige Moleküle, die die Organellen für ihre Arbeit benötigen. Wenn etwa ein Chloroplast ein bestimmtes Protein herstellen muss, bestellt er zunächst eine Abschrift der entsprechenden Bauanleitung. Mit diesem Konstruktionsplan kann er dann das Protein produzieren.

    Die Gene der Chloroplasten und Mitochondrien enthalten häufig Fehler

    „Allerdings sind die Gene der Chloroplasten und Mitochondrien oft fehlerhaft“, erklärt Elena Lesch, die am Institut für Zelluläre und Molekulare Botanik der Universität Bonn promoviert. „Die Abschriften müssen daher korrigiert werden. Sonst funktionieren die Proteine nicht, die nach ihrer Anleitung zusammengebaut werden.“ Dafür nutzen Pflanzen eine Art Tipp-Ex - spezielle Moleküle, die zur Gruppe der PPR-Proteine gehören.

    Pflanzen verfügen über mindestens Dutzende, teils sogar Tausende, dieser speziellen PPR-Proteine. Jedes einzelne davon korrigiert ganz spezifische Fehler - das wäre so, wie wenn es bei der Zeitung für jedes Wort einen anderen Korrekturleser gäbe. Die PPR-Proteine werden aber nicht in den Organellen hergestellt, in denen sie zum Einsatz kommen, sondern im Innern der Zelle, im sogenannten Cytosol.

    Auch im Cytosol tummeln sich jede Menge Genabschriften. Sie stammen allerdings aus dem Zellkern, wo der allergrößte Teil der vielen Tausend Pflanzengene aufbewahrt wird. Mitochondrien und Chloroplasten enthalten dagegen jeweils nur ein paar Dutzend Gene. Die Tipp-Ex-Proteine könnten theoretisch auch die Abschriften im Cytosol korrigieren. „Sie tun das jedoch nicht, sondern gehen ihrer Tätigkeit ausschließlich in den Organellen nach“, sagt Lesch. „Wir wollten wissen, warum das so ist.“

    Transportmechanismus in die Organellen überfordert

    Eine potenzielle Antwort ist, dass die molekularen Korrekturleser einfach zu schnell vom Cytosol in die Organellen gebracht werden. Um diese Möglichkeit zu untersuchen, versahen die Forschenden PPR-Gene im Laubmoos Physcomitrium mit einer Art molekularem Schalter. Dadurch konnten sie die Zellen gewissermaßen auf Knopfdruck dazu bringen, sehr große Mengen von PPR-Proteinen zu produzieren. „Wir konnten zeigen, dass das den Transportmechanismus überfordert“, sagt Leschs Kollegin Mirjam Thielen, die einen großen Teil der Experimente durchgeführt hat. „Die PPR-Proteine häuften sich dadurch im Cytosol an.“

    Dort begannen sie nun damit, Abschriften aus dem Zellkern zu verändern. „Wir haben die vorgenommenen Änderungen analysiert“, sagt Lesch: „Dabei zeigte sich, dass die Proteine eine große Zahl von Bauanleitungen verändert hatten, die eigentlich korrekt gewesen wären. Solche falschen Eingriffe sind natürlich kontraproduktiv, da sie die Funktion von Proteinen gefährden können.“ Doch warum ist das so? Die PPR-Proteine detektieren nicht nur Fehler, sondern binden auch an sogenannte „Off-Target-Sequenzen“. Dabei handelt es sich um Stellen, die zwar einer fehlerhaften Sequenz ähneln, aber eigentlich völlig korrekt sind. „Da sich im Cytosol Abschriften von Zehntausenden Genen tummeln, wäre die Gefahr groß, dass fälschlicherweise solche Off-Target-Sequenzen fehlkorrigiert werden“, betont Lesch.

    Produktion der Tipp-Ex-Moleküle wird streng reguliert

    Um das zu verhindern, produziert die Pflanze normalerweise stets nur relativ geringe Mengen von PPR-Proteinen. Diese werden dann direkt in die Organellen transportiert, bevor das molekulare Tipp-Ex im Cytosol Schaden anrichten kann. Da die Zahl der Gene und damit auch ihrer Abschriften in den Chloroplasten und Mitochondrien überschaubar ist, kommt es dort in der Regel nicht zu Fehlkorrekturen.

    Die Studie liefert neue Einblicke in die Zielerkennung der Korrektur-Proteine. Die Ergebnisse lassen sich daher eventuell zukünftig nutzen, um ganz gezielt bestimmte Genabschriften in Mitochondrien und Chloroplasten zu verändern und den Effekt solcher Änderungen zu untersuchen. Wegen der wichtigen Rollen dieser Organellen im Energiestoffwechsel der Pflanzen sind hier auch interessante Nutzanwendungen denkbar.

    Förderung:
    Die Arbeiten wurden durch die Deutsche Forschungsgemeinschaft (DFG) gefördert.


    Contact for scientific information:

    Elena Lesch
    Institut für Zelluläre und Molekulare Botanik
    Universität Bonn
    E-Mail: elena-lesch@uni-bonn.de


    Original publication:

    Mirjam Thielen, Béla Gärtner, Volker Knoop, Mareike Schallenberg-Rüdinger, Elena Lesch: Conquering new grounds: plant organellar C-to-U RNA editing factors can be functional in the plant cytosol; The Plant Journal; DOI: 10.1111/tpj.16804
    https://doi.org/10.1111/tpj.16804


    Images

    Von der Abteilung Molekulare Evolution der Universität Bonn: Erstautorin Mirjam Thielen (links), und Letztautorin Elena Lesch (rechts) mit Kulturen des Modell-Laubmooses Physcomitrium und Abteilungsleiter Prof. Volker Knoop mit einem Modell von PPR78.
    Von der Abteilung Molekulare Evolution der Universität Bonn: Erstautorin Mirjam Thielen (links), und ...
    Knoop
    Knoop / Uni Bonn

    Im genetisch veränderten Laubmoos sammelten sich die Tipp-Ex-Proteine im Cytosol an und veränderten dort Gen-Abschriften. Normalerweise transportiert die Pflanze die Proteine daher schnell in die Organellen.
    Im genetisch veränderten Laubmoos sammelten sich die Tipp-Ex-Proteine im Cytosol an und veränderten ...
    Elena Lesch
    Elena Lesch / Universität Bonn


    Criteria of this press release:
    Journalists, all interested persons
    Biology
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).