idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/09/2024 06:30

How a plant app helps identify the consequences of climate change

Kati Kietzmann Medien und Kommunikation
Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

    Leipzig. A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel approach described in Methods in Ecology and Evolution can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.

    Plants are known to respond to seasonal changes by budding, leafing, and flowering. As climate change stands to shift these so-called phenological stages in the life cycle of plants, access to data about phenological changes – from many different locations and in different plants – can be used to draw conclusions about the actual effects of climate change. However, conducting such analyses require a large amount of data and data collection of this scale would be unthinkable without the help of citizen scientists. “The problem is that the quality of the data suffers when fewer people engage as citizen scientists and stop collecting data,” says first author Karin Mora, research fellow at Leipzig University and iDiv.

    Mobile apps like Flora Incognita could help solve this issue. The app allows users to identify unknown wild plants within a matter of seconds. “When I take a picture of a plant with the app, the observation is recorded with the (exact) location as well as a time stamp,” explains co-author Jana Wäldchen from the Max Planck Institute for Biogeochemistry (MPI-BGC), who developed the app with colleagues from TU Ilmenau. “Millions of time-stamped plant observations from different regions have been collected by now.” Although satellite data also records the phenology of entire ecosystems from above, they do not provide information about the processes taking place on the ground.

    Plants show synchronised response

    The researchers developed an algorithm that draws on almost 10 million observations of nearly 3,000 plants species identified between 2018 and 2021 in Germany by users of Flora Incognita. The data show that each individual plant has its own cycle as to when it begins a flowering or growth phase. Furthermore, the scientists were able to show that group behaviour arises from the behaviour of individuals. From this, they were able to derive ecological patterns and investigate how these change with the seasons. For example, ecosystems by rivers differ from those in the mountains, where phenological events start later.

    The algorithm also accounts for the observational tendencies of Flora Incognita users, whose data collection is far from systematic. For example, users record more observations on the weekend and in densely populated areas. “Our method can automatically isolate these effects from the ecological patterns,” Karin Mora explains. “Fewer observations don’t necessarily mean that we can’t record the synchronisation. Of course, there are very few observations in the middle of winter, but there are also very few plants that can be observed during that time.”

    It is known that climate change is causing seasonal shifts – for example, spring is arriving earlier and earlier. How this affects the relationship between plants and pollinating insects and therefore potentially also food security is still being subject to further research. The new algorithm can now be used to better analyse the effects of these changes on the plant world.



    This study was funded by the Deutsche Forschungsgemeinschaft (DFG; FZT-118) and the iDiv Flexpool.


    Contact for scientific information:

    Dr Karin Mora
    Institute for Earth System Science and Remote Sensing
    Remote Sensing Centre for Earth System Research
    Leipzig University
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    karin.mora@uni-leipzig.de


    Original publication:

    Karin Mora, Michael Rzanny, Jana Wäldchen, Hannes Feilhauer, Teja Kattenborn, Guido Kraemer, Patrick Mäder, Daria Svidzinska, Sophie Wolf, Miguel D. Mahecha (2024): Macrophenological dynamics from citizen science plant occurrence data. Methods in Ecology and Evolution, DOI: 10.1111/2041-210X.14365


    Images

    The Flora Incognita app makes it easy to identify plants with a smartphone.
    The Flora Incognita app makes it easy to identify plants with a smartphone.
    Flora Incognita
    Use of the pictures permitted for reports related to this media release only. Credit must be given to the picture originator.


    Criteria of this press release:
    Journalists
    Biology, Environment / ecology, Geosciences, Oceanology / climate
    transregional, national
    Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).