idw - Informationsdienst
Wissenschaft
Forscherinnen und Forscher des Paul Scherrer Instituts PSI und der Australian National University haben die Halbwertszeit von Samarium-146 sehr präzise bestimmt. Das Ergebnis passt perfekt zu den Daten, die Astrophysikerinnen und Astrophysiker, Geochemikerinnen und Geochemiker von extraterrestrischen Proben erhalten haben. Die Studie erscheint heute im Fachblatt Nature Scientific Reports.
Samarium-146 hat eine Halbwertszeit von 103 Millionen Jahren. Oder von 68 Millionen Jahren. Oder etwa doch von 98 Millionen Jahren? So genau wusste man das bisher nicht, denn seit den ersten Messungen in den 1950ern kamen Forscherinnen und Forscher immer wieder zu widersprüchlichen Ergebnissen. In den Wissenschaften Astrophysik und Geochemie ist das ein grosses Problem: Forscherinnen und Forscher brauchen einen möglichst genauen Wert der Halbwertszeit von Samarium-146, um die Bildung von Asteroiden und Planeten zu erklären oder das Alter von Gesteinen zu datieren. Für sie hat die Ungewissheit nun ein Ende. Samarium-146 hat eine Halbwertszeit von 92 Millionen Jahren – was die Altersbestimmungen von Meteoriten oder Mondproben sehr gut bestätigt.
Das bisher präziseste Ergebnis
Zu diesem Ergebnis kommt ein Team von Forscherinnen und Forschern am Paul Scherrer Institut PSI in Villigen und an der Australian National University in Canberra. «Unser Ergebnis ist das bisher genaueste», sagt Dorothea Schumann, die das Team leitete. Dies bestätigen auch die Gutachter, die die Arbeit beurteilt haben: «Dies ist eine hervorragende Arbeit. Sie ist wie das 'Ei des Kolumbus'», urteilten sie. Besonders hoben sie hervor, dass in der Publikation alle Schritte nachvollziehbar beschrieben wurden und das Ergebnis somit lückenlos erklärt wird. «Ich bin beeindruckt von der ausführlichen Dokumentation und Quantifizierung möglicher Artefakte.», heisst es unter anderem in dem Gutachten.
Das hat gute Gründe. 2012 hatte ein Team aus Japan, Israel und den USA einen überraschend niedrigen Wert für die Halbwertszeit von Samarium-146 veröffentlicht: 68 Millionen Jahre mit einer Unsicherheit von 7 Millionen Jahren. Das hat unter Geowissenschaftlerinnen und Geowissenschaftlern weltweit für Bestürzung gesorgt, da dieser Wert weder zu den älteren Experimenten passte noch zu den Messdaten von Meteoriten, die für die Datierung der Entstehung unseres Sonnensystems verwendet werden. Weil niemand eine endgültige Entscheidung darüber treffen konnte, welches Ergebnis das richtigere ist, lautete die Empfehlung eines Expertenteams, einfach diesen neuen und den zuvor bekannten Wert parallel zu verwenden – ein für Forscherinnen und Forscher unhaltbarer Zustand. Für Mondgesteine ergeben sich so zum Beispiel Unterschiede von 90 Millionen Jahren, was circa 35 Prozent ihres Entstehungsalters entspricht. 2023 kam dann die Erlösung: Die Autoren konnten eine Ungenauigkeit in einem Schritt der Probenherstellung identifizieren und zogen ihre Arbeit deshalb zurück.
Vertagtes Problem
Doch damit war das Problem nur vertagt. In den Geowissenschaften benötigte man nach wie vor einen genaueren Wert für die Halbwertszeit von Samarium-146 und weiterer radioaktiver Isotope, die eine wichtige Rolle für die Datierung der Planetenentstehung spielen. All diesen Isotopen gemeinsam ist, dass sie lange Halbwertszeiten von vielen Millionen Jahren haben. So lange dauert es, bis die Hälfte des radioaktiven Stoffs zerfallen ist. Bei Samarium-146 handelt es sich um einen reinen Alpha-Strahler, das Atom sendet einen Helium-Kern aus und zerfällt in Neodym-142. Weil man selbstverständlich nicht Millionen Jahre warten kann, bis eine nennenswerte Menge eines Stoffs zerfallen ist, braucht es andere Methoden, die schneller zum Ergebnis kommen.
Das ist in der Theorie ganz einfach. Um die Halbwertszeit eines beliebigen radioaktiven Isotops zu bestimmen, muss man «nur» die Zahl der Atome in der Probe bestimmen sowie die Aktivität, also die Zerfallsrate. Der Quotient ergibt dann die Halbwertszeit bis auf einen konstanten Faktor, den natürlichen Logarithmus von 2. «Nur» ist hier allerdings ein viel zu optimistisches Wörtchen. Denn die exakte Bestimmung der beiden Werte ist kompliziert und gepflastert mit experimentellen Stolpersteinen. Das Team hat aber für alle diese Herausforderungen Lösungen gefunden.
Das Experiment gliedert sich in drei Teile. Erstens die Gewinnung ausreichender Mengen des auf der Erde nicht vorkommenden Isotops Samarium-146. Dafür erwiesen sich Tantal-Proben, die an der Schweizer Spallations-Neutronenquelle SINQ des PSI bestrahlt wurden, als perfektes Ausgangsmaterial. Mithilfe einer Reihe von hoch selektiven chemischen Trennverfahren erhielt man die äusserst reine Lösung einer Samarium-Verbindung zur Herstellung einer sehr dünnen Probe für die Aktivitätsmessung. Dazu wurde ein Teil der Lösung auf einer nur 75 Mikrometer dünnen Kohlenstofffolie abgeschieden.
Zweitens die Aktivitätsmessung: Die so präparierte Samarium-Probe wurde dann in einen wohl definierten Abstand zu einem Detektor für Alpha-Strahlung gebracht. Die Samarium-Abscheidung ist nur Bruchteile eines Mikrometers dünn, sodass sie die Alphateilchen nicht stoppt. Durch die Bestimmung der Energie lässt sich ausserdem erkennen, ob ein Alphateilchen tatsächlich vom Zerfall des Samarium-146 stammt. Kalibriert wurde die Apparatur mit einer sehr genau bestimmten Probe von Americium-241, die von der deutschen Physikalisch-Technischen Bundesanstalt in Braunschweig hergestellt wurde. Wegen der winzigen Menge an Samarium-146 – sogar ein einzelnes Körnchen Puderzucker wiegt 10-mal mehr – musste das Team drei Monate lang messen, um die Aktivität genau genug zu bestimmen, es waren knapp 54 Zerfälle pro Stunde.
Drittens die Bestimmung der Zahl der Atome: Hier haben die Forscherinnen und Forscher die Samarium-Lösung mit verscheiden Massenspektrometern sowohl am PSI als auch an der Australian National University auf seine Zusammensetzung untersucht, wobei die Anzahl der Atome von Samarium-146 und auch aller anderen in der Probe vorhandenen Samarium-Isotope gezählt wurde. Durch die Zugabe von natürlichem Samarium, das kein Samarium-146 enthält, konnte auch der genaue Gehalt aller Samarium-Isotope inklusive Samarium-146 bestimmt werden. Weil in der Mischung noch ein zusätzliches künstliches Samarium-Isotop enthalten ist, das Gamma-Strahlung aussendet, konnten die Forscherinnen und Forscher feststellen, wie viele Samarium-146-Atome auf der dünnen Folie abgeschieden wurden: genau 6,28 mal 1013 Atome oder nur 0,000018 Milligramm Samariumoxid (146Sm2O3). Ausserdem konnte das Team die hohe Reinheit der Probe nicht nur behaupten, sondern tatsächlich auch durch zusätzliche Messungen belegen. «Das ist die Spezialität unseres Labors am PSI und das haben auch die Gutachter an unserer Publikation besonders hervorgehoben», sagt Rugard Dressler vom Labor für Radiochemie.
Nachdem die experimentellen Herausforderungen gemeistert waren, war der Rest ein Fall für den Taschenrechner. Das Ergebnis für die Halbwertszeit von Samarium-146 ist 92,0 ±2,6 Millionen Jahre.
Nur am PSI möglich
Diese Messung war ausschliesslich am PSI dank der ERAWAST-Initiative (Exotic Radionuclides from Accelerator Waste for Science and Technology) möglich, einem langjährigen Projekt unter Förderung des Schweizerischen Nationalfonds, das radioaktiven Abfall aus den Beschleunigern am PSI zu Forschungszwecken weiterverwendet. Am Protonenbeschleuniger und an der Schweizer Spallations-Neutronenquelle SINQ des PSI entstehen viele radioaktive Isotope in unterschiedlichen Kernreaktionen. Die meisten stören nur durch ihren radioaktiven Zerfall und werden deshalb als radioaktiver Abfall klassifiziert, andere sind jedoch äusserst selten und in der Grundlagenforschung sehr begehrt. Die Forscherinnen und Forscher der Arbeitsgruppe Isotope und Target-Chemie im Labor für Radiochemie am PSI um Dorothea Schumann, Projektleiterin und Initiatorin der ERAWAST-Initiative und Mitautorin des Samarium-Papers, haben in den letzten 15 Jahren in diesem Projekt Techniken entwickelt, um viele der interessanten Isotope aus den Abfällen chemisch abzutrennen und hochreine Proben herzustellen. «Nur so war es möglich, eine ausreichende Menge Samarium-146 für die genaue Bestimmung der Halbwertszeiten zu gewinnen – eine Möglichkeit, die es an keinem anderen Ort der Welt gibt», sagt Zeynep Talip, die die Arbeitsgruppe nun leitet und ebenfalls Mitautorin des Samarium-Papers ist.
Für Rugard Dressler ist die Arbeit zu Samarium-146 erst einmal abgeschlossen, für andere geht sie nun erst los. Der Physiker vom Labor für Radiochemie des PSI betont: «Den einen richtigen Wert für die Halbwertszeit von Samarium-146 gibt es nicht. Unser Ergebnis ist zwar sehr genau, es muss aber nun von anderen Gruppen bestätigt und weiter verbessert werden.»
Text: Bernd Müller
------------------------------------
Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Zukunftstechnologien, Energie und Klima, Health Innovation und Grundlagen der Natur. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2300 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 460 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.
Dr. Rugard Dressler
Labor für Radiochemie
PSI Center for Nuclear Engineering and Science
+41 56 310 24 69
rugard.dressler@psi.ch
The 146Sm half-life re-measured: consolidating the chronometer for events in the early Solar System
Chiera et al.
Nature Scientific Reports, 01.08.2024
DOI: 10.1038/s41598-024-64104-6
https://i.psi.ch/4V1 – Medienmitteilung auf der Webseite des Paul Scherrer Instituts PSI
Zeynep Talip, Rugard Dressler und Dorothea Schumann (von links) freuen sich über das Ergebnis einer ...
Markus Fischer
Paul Scherrer Institut PSI
Criteria of this press release:
Journalists
Chemistry, Geosciences, Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).