idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/05/2024 12:31

Cement Instead of Landfill – Recycling of Incineration Bottom Ash

Birte Vierjahn Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

    Today, copper ore extraction is economically viable from a minimum content of 0.3 percent. Waste incineration produces ash with a fine fraction containing an average of 0.3 to 0.5 percent copper. However, its extraction is only worthwhile if the remaining mineral fraction can be utilized further. The University of Duisburg-Essen and partners from the waste incineration, processing, and cement industries developed a corresponding process in the EMSARZEM project. A practical test in an industrial format was successfully conducted last July.

    In 2022, about 25 million tons of waste in Germany were "thermally treated" in incineration plants. Conventional methods like screening, magnetic, and eddy current separators recover around 600,000 tons of metals from the residues. The remaining incineration ash is primarily used in landfills for base seals, functional layers, and other construction measures, even though valuable metals are still present. "Theoretically, incineration ash can be used as a substitute building material in road and earthworks, but in 2020, only about 17 percent was used in this way. The majority still ends up in landfill construction," explains Prof. Dr. Rüdiger Deike from the University of Duisburg-Essen (UDE).

    Under the leadership of GKS-Gemeinschaftskraftwerk Schweinfurt GmbH, the nine partners of the EMSARZEM project – Use of Waste Incineration Slag as a Raw Material for Cement Production – have developed an economical, industrially feasible process in the spirit of urban mining. The ash, which has a grain size of 0 to 10 mm, is ground in various stages; different valuable materials are extracted using various separation processes. The metals are primarily separated from the mineral fraction and reintegrated into metal production. The more significant remaining portion – the mineral material – is cleaned depending on its grain size and used as a raw material in cement and concrete production or as a substitute for natural aggregates in concrete applications.

    "With this process, from an originally worthless quantity – worthless because it is extremely finely distributed in the waste – theoretically 8,000 tons per year of a copper concentrate can be separated. This would contain about 2,800 tons of copper, 20 tons of silver, and 100 kilograms of gold. However, extraction would only be economically viable if the mineral fraction can be utilized," explains Prof. Deike.

    Deike's Metallurgy and Forming Technology working group focuses on the detailed investigation of the separated metal fractions. Prof. Dr. Jutta Geldermann's team (Production Management/UDE) is conducting economic calculations and creating the life cycle assessment of this process. "The EMSARZEM project contributes to the future recovery of raw materials through thermal waste treatment, which would otherwise be irretrievably lost," explains Dr. Ragnar Warnecke, the managing director of GKS-Gemeinschaftskraftwerk Schweinfurt GmbH.

    EMSARZEM is funded by the Federal Ministry of Education and Research (BMBF), Germany. The BMBF presents the project in a short film here: [https://video.tu-clausthal.de/film/1398.html](https://video.tu-clausthal.de/film...).

    For the editors:
    Two photos are available for reporting on this news item at the following link: http://www.uni-due.de/de/presse/pi_fotos.php

    Image 1: View into the combustion chamber of a waste incineration plant at GKS-Gemeinschaftskraftwerk Schweinfurt GmbH. © GKS
    Image 2: In the test, the waste incineration ash was ground in various stages in an industrial mill. © Loesche GmbH

    Editor: Birte Vierjahn, birte.vierjahn@uni-due.de


    Contact for scientific information:

    Prof. Dr. Rüdiger Deike, Metallurgy and Forming Technology, T. +49 203 379 3455, ruediger.deike@uni-due.de


    Images

    Criteria of this press release:
    Journalists
    Economics / business administration, Environment / ecology, Materials sciences, Mechanical engineering
    transregional, national
    Research projects
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).