idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/13/2024 10:00

New Molecular Insights into Bariatric Surgery's Impact on Obesity and Type 2 Diabetes

Susann-C. Ruprecht Presse- und Öffentlichkeitsarbeit
Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

    Researchers from the German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE) and the German Center for Diabetes Research (DZD) have gained insights shedding light on the molecular adaptations occurring in skeletal muscle following bariatric surgery, particularly in individuals with and without type 2 diabetes.

    Bariatric surgery is a widely recognized intervention for obesity management. The medical intervention alters the digestive system to limit the amount of food that can be eaten or absorbed or affect hunger via the incretin system, thereby promoting significant and sustained weight loss. Bariatric surgery is typically considered for individuals who have not achieved long-term weight loss through diet and exercise.

    It is known that during the development of type 2 diabetes (T2D), epigenetic alterations (DNA methylation and hydroxymethylation) occur in skeletal muscle, a key tissue taking up glucose in response to insulin. However, it is unclear to what extent these alterations are reversible through interventions such as bariatric surgery.

    Linking clinical outcomes to transcriptome and epigenome

    Therefore, an interdisciplinary DZD team including the researchers Leona Kovac, Annette Schürmann and Meriem Ouni from the DIfE as well as Sabine Kahl and Michael Roden from the German Diabetes Center (DDZ) investigated the effects of surgically-induced weight loss on metabolic, transcriptional, and epigenetic adaptations in skeletal muscle of obese individuals with and without T2D by using a comprehensive bioinformatic approach. Additionally, multidimensional links between molecular and metabolic changes induced by bariatric surgery were explored. These links aimed at identifying novel prominent candidates associated with weight loss and improved muscle function.

    The examined individuals were a subset of participants from the BARIA_DDZ cohort study, which closely monitors individuals through detailed metabolic characterization both before and over five years following bariatric surgery. The study described here focused on the metabolic and molecular outcomes achieved during the first year. In total 13 male participants with obesity (OB) and 13 participants with OB and T2D underwent an extensive anthropometric and metabolic investigation including a muscle biopsy and detection of tissue-specific insulin sensitivity before and one year after surgery.

    Perturbed epigenetic flexibility

    DZD researchers found distinct molecular responses in skeletal muscle following bariatric surgery between obese individuals and those with additional T2D. Before surgery, obese T2D participants exhibited higher fasting glucose and insulin levels alongside lower insulin sensitivity compared to OB. Following surgery, improvements in metabolic health were more pronounced in OB, reflected by differential gene expression patterns related to insulin signaling, intracellular signal transduction, and oxidative phosphorylation. In contrast, obese T2D participants showed alterations only in genes associated with ribosome and spliceosome pathways, with less pronounced changes in DNA methylation, potentially linked to altered expression of one of the T2D risk genes involved in the demethylation processes.

    Tailoring of individual therapies

    These findings underscore the importance of understanding molecular adaptations in skeletal muscle post-bariatric surgery, particularly in individuals with type 2 diabetes. "Our study suggests that epigenetic mechanisms play a crucial role in mediating these responses and predicting the health outcome.”, states Dr. Meriem Ouni.

    “Our future research will investigate the molecular mechanisms underlying changes in DNA hydroxymethylation and its potential function in skeletal muscle post-surgery. Furthermore, we aim to validate specific candidates identified by the bioinformatic approach as potential therapeutic targets in muscle.”, emphasizes Prof. Dr. Annette Schürmann, Head of the Department of Experimental Diabetology at DIfE. In this manner, approaches for individuals with different metabolic profiles could be tailored.

    Funding

    This collaborative effort between DDZ and DIfE was supported by a grant from the DZD, highlighting the importance of multidisciplinary research in addressing complex metabolic disorders.

    Background Information

    Epigenetics
    Epigenetics investigates those characteristics of genes that are not revealed by changes of the DNA sequence itself, but by its readability. Epigenetic information is mediated by methyl groups or other biomolecules (DNA methylation and hydroxymethylation). Epigenetic marks change the way genes are expressed. They act like a kind of switch in the genome that turns a gene on or off. Epigenetic changes can be triggered by lifestyle and, according to the current study, also by surgically induced weight loss.


    Contact for scientific information:

    Dr. Meriem Ouni
    Postdoc of the Department of Experimental Diabetology
    phone: +49 33200 88-2505
    e-mail: meriem.ouni@dife.de

    Prof. Dr. Annette Schürmann
    Head of the Department of Experimental Diabetology
    phone: +49 33200 88-2368
    e-mail: schuermann@dife.de


    Original publication:

    Kovac, L., Gancheva, S., Jähnert, M., Sehgal, R., Mastrototaro, L., Schlensak, M., Granderath, F. A., Rittig, K., Roden, M., Schürmann, A., Kahl, S., Ouni, M.: Different effects of bariatric surgery on epigenetic plasticity in skeletal muscle of individuals with and without type 2 diabetes. Diabetes Metab. 50 (5) (2024) [Open Access]
    [https://doi.org/10.1016/j.diabet.2024.101561]

    Related Publications

    Ouni, M., Kovac, L., Gancheva, S., Jähnert, M., Zuljan, E., Gottmann, P., Kahl, S., de Angelis, M. H., Roden, M., Schürmann, A.: Novel markers and networks related to restored skeletal muscle transcriptome after bariatric surgery. Obesity 32(2), 363-375 (2024). [Open Access]
    [https://doi.org/10.1002/oby.23954]

    Gancheva, S., Ouni, M., Jelenik, T., Koliaki, C., Szendroedi, J., Toledo, F. G. S., Markgraf, D. F., Pesta, D. H., Mastrototaro, L., De Filippo, E., Herder, C., Jähnert, M., Weiss, J., Strassburger, K., Schlensak, M., Schürmann, A., Roden, M.: Dynamic changes of muscle insulin sensitivity after metabolic surgery. Nat. Commun. 10(1):4179 (2019). [Open Access]
    [https://doi.org/10.1038/s41467-019-12081-0]


    More information:

    https://www.dzd-ev.de/en/ German Center for Diabetes Research (DZD)


    Images

    Dr. Meriem Ouni (l.) and Prof. Dr. Annette Schürmann
    Dr. Meriem Ouni (l.) and Prof. Dr. Annette Schürmann
    C. Schrandt / D. Ausserhofer
    DIfE


    Criteria of this press release:
    Journalists, all interested persons
    Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).