idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/30/2024 11:00

The changing climate could increase mobility of toxic metals in soils

Christfried Dornis Hochschulkommunikation
Eberhard Karls Universität Tübingen

    University of Tübingen and Helmholtz Centre for Environmental Research (UFZ) team investigates the effects of rising temperatures and carbon dioxide levels on agriculture

    The changes scientists expect in the climate could cause the toxic metals naturally occurring in soils to become more mobile, destabilize ecosystems and increasingly enter the human food chain via agriculture. Such scenarios are particularly likely to occur in slightly acidic soils, which make up around two thirds of all soils. These are the conclusion of an experimental study on agricultural soils tested for the metal cadmium, which can cause cancer. The study was headed by assistant professor Marie Muehe from Plant Biogeochemistry at the University of Tübingen and the Helmholtz Center for Environmental Research (UFZ). The results have been pub-lished in the journal Nature Communications Earth and Environment.

    By 2100, global temperatures are predicted to rise by two to four degrees com-pared to pre-industrial levels. In that time, the current carbon dioxide content of the atmosphere is expected to double. Here in Germany, the amount of precipitation could decrease slightly. Marie Muehe says the further effects are hard to predict: “Climate change and metals each separately place stress on the microorganisms in the soil, collectively referred to as the soil microbiome. We sought to investigate the previously little-known combined effects of these influences,” she says. There are toxic metals in every soil on our planet, says Muehe, but in bound form they are of little significance for soil organisms and plant cultivation. The situation changes when the metals are mobilized. “In our study, we examined cadmium, the classic example of a toxic metal found in the soil,” she says. Cadmium has a toxic effect on all living organisms because it inhibits physiological processes in the cells.

    Complex interactions

    In the experiment, the research team filled columns with agricultural soil provided by various farms. “We ran these soils through a regular growing season in Germa-ny in the laboratory, but under the assumed climate conditions of the year 2100,” explains the study's lead author Sören Drabesch, also from the University of Tübingen and the UFZ. “We investigated the changes in the soil and soil microbiome over time.”

    The research team found that the mobility of the cadmium present in the soil will increase on today’s conditions by around 40 percent in slightly acidic soils in the summer temperatures of future climate conditions. “It can then be found in higher concentrations in the pore water of the soil and influences the soil microbiome, or the activity pattern of various microorganisms,” says Drabesch. “Certain microorganisms become more active, utilize more nitrogen and thus further acidify the soil environment.” In some soils, cadmium levels are set to rise to such an extent that the soil microbiome suffers and the ecosystem has to adapt. By contrast, no comparable problems were found in soils that were originally slightly alkaline. Even under changed climatic conditions, the cadmium was not mobilized to any great extent.

    The study shows how complex the interactions are between the changing climate, the substances in the soil and the soil microbiome, says Muehe. “Ecosystems, including agricultural ecosystems, could be massively disturbed by increased amounts of mobile cadmium in the future. This could also change the greenhouse gas emissions caused by agriculture and the mobile cadmium could end up in crops which could then be harmful to human health.” These developments must continue to be monitored, the researchers say.


    Contact for scientific information:

    Assistant Prof. Dr. Marie Muehe
    University of Tübingen
    Department of Geoscience – Plant Biogeochemistry
    Helmholtz Centre for Environmental Research (UFZ)
    Phone +49 7071 29-73153
    eva-marie.muehe[at]uni-tuebingen.de


    Original publication:

    Sören Drabesch, Oliver J. Lechtenfeld, Esmira Bibaj José Miguel Leon Ninin, Juan Lezama Pachecco, Scott Fendorf, Britta Planer-Friedrich, Andreas Kappler, E. Marie Muehe: Climate induced microbiome alterations increase cadmium bioavailability in agricultural soils with pH below 7. Nature Communications Earth and Environment, https://doi.org/10.1038/s43247-024-01794-w


    Images

    Soils naturally contain small amounts of metals such as cadmium. These could be mobilized to a greater extent in the future by a changing climate, thereby entering the human food chain via crop cultivation.
    Soils naturally contain small amounts of metals such as cadmium. These could be mobilized to a great ...
    Sören Drabesch
    Sören Drabesch

    Soils naturally contain small amounts of metals such as cadmium. These could be mobilized to a greater extent in the future by a changing climate, thereby entering the human food chain via crop cultivation.
    Soils naturally contain small amounts of metals such as cadmium. These could be mobilized to a great ...
    Sören Drabesch
    Sören Drabesch


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Environment / ecology, Geosciences, Oceanology / climate
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).