idw - Informationsdienst
Wissenschaft
LMU-Forschende haben untersucht, wie sich kationische Polymere beim Transport von RNA-Medikamenten auf molekularer Ebene organisieren.
Kationische Polymere sind ein vielversprechendes Werkzeug für den Transport von RNA-Therapeutika oder RNA-Impfstoffen und werden ähnlich wie Lipid-Nanocarrier bei mRNA-Impfstoffen eingesetzt. Die nanoskopischen Verpackungsmaterialien sind in der Lage, ihre Ladung effektiv zu schützen und sie in die Zielzellen zu verfrachten. „Wir stellen Genfähren her, in die man alle möglichen therapeutischen Nukleinsäuren einbringen kann, um diese unbeschadet an den Wirkort zu bringen“, erklärt Professorin Olivia Merkel, Inhaberin des Lehrstuhls für Drug Delivery an der Fakultät für Chemie und Pharmazie der LMU.
Um die Wirksamkeit dieser Genfähren weiter zu verbessern, sei es jedoch wichtig, zu verstehen, wie sich diese Partikel auf molekularer Ebene organisieren, RNA verkapseln und wieder freigeben – ein Aspekt, der bisher noch nicht vollständig untersucht wurde. Merkel ist Leiterin einer neuen Studie, die im Rahmen ihres ERC-Forschungsprojekts RatInhalRNA (Rational and Simulation-Supported Design of Inhalable RNA Nanocarriers) neue Erkenntnisse über die Organisation der Nanocarrier erbracht hat. Die Ergebnisse wurden kürzlich im Fachmagazin Nano Letters publiziert.
„Unsere Forschung nutzte eine Technik namens Coarse-Grained Molecular Dynamics (CG-MD), um die Partikel zu simulieren und zu visualisieren“, erklärt die Forscherin. Der Fokus lag dabei auf der Frage, wie Änderungen in der Polymerstruktur und den Umgebungsbedingungen die Partikelbildung beeinflussen. Die Simulationen wurden in Laborexperimenten mittels Kernspinresonanzspektroskopie (NMR) bestätigt und zeigten, dass die CG-MD-Technik detaillierte Einblicke in die Struktur und das Verhalten von RNA-Nanopartikeln liefern kann. „Diese Studie unterstreicht den Wert von CG-MD bei der Vorhersage und Erklärung der Eigenschaften von RNA-Nanoformulierungen, was die Entwicklung besserer Systeme für zukünftige medizinische Anwendungen unterstützen kann“, so Merkel.
Prof. Dr. Olivia Merkel
Fakultät für Pharmazie
Ludwig-Maximilians-Universität München
olivia.merkel@cup.uni-muenchen.de
Tel.: +49 89 2180 77022
Katharina M. Steinegger, Lars Allmendinger, Sebastian Sturm, Felix Sieber-Schäfer, Adrian Philipp Eckart Kromer, Knut Müller-Caspary, Benjamin Winkeljann & Olivia M. Merkel: Molecular Dynamics Simulations Elucidate the Molecular Organization of Poly(beta-amino ester) Based Polyplexes for siRNA 3 Delivery. Nano Letters 2024
https://doi.org/10.1021/acs.nanolett.4c04291
Criteria of this press release:
Journalists
Biology, Chemistry, Medicine, Nutrition / healthcare / nursing
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).