idw - Informationsdienst
Wissenschaft
Researchers at the University of Gothenburg, Sweden, in collaboration with colleagues in China, have discovered an antibody-like molecule that can protect mice from various influenza viruses. The findings could pave the way for new treatments and the development of broader influenza vaccines.
“We have identified a small molecule that binds to the virus’s surface protein and prevents infection. This molecule, known as E10, belongs to a class of so-called nanobodies. It has shown the ability to protect mice from several influenza strains, including those responsible for seasonal epidemics”, says Davide Angeletti, Associate Professor of Immunology at Sahlgrenska Academy, University of Gothenburg, and the study’s senior author.
Effective against multiple influenza types
The molecule targets a conserved part of the virus's surface protein shared across various influenza types, including the avian influenza H7N9 and common human influenza viruses such as H1N1 and H3N2. Mice treated with this molecule were protected from infection, and a vaccine based on the same binding site also provided a good degree of protection.
“It’s rare to find a molecule capable of protecting against so many different influenza viruses. We also observed that viruses attempting to mutate to evade the molecule lose their ability to grow effectively, which is a significant advantage”, adds Davide Angeletti.
Although the results are promising, the discovery is still far from being implemented as a treatment or vaccine. Before clinical use, the molecule must be tested in additional animal models and undergo clinical trials to ensure it is both safe and effective.
A global health challenge
Influenza remains a persistent threat to global public health. These viral infections cause seasonal epidemics that lead to hundreds of thousands of deaths worldwide each year. This discovery has the potential to contribute to protection during active infections and could also pave the way for vaccines targeting multiple variants of influenza.
The study was conducted in collaboration between researchers in Sweden and China and has been published in the journal Nature Communications. Zhao-Shan Chen, a PhD student from China and the study's first author, initially isolated the E10 molecule from an alpaca in Professor Qiyun Zhu’s laboratory at the Chinese Academy of Agricultural Sciences. Chen later continued her work in Davide Angeletti’s lab at the University of Gothenburg, where the molecule’s protective effects against various influenza viruses were tested.
Davide Angeletti, Associate Professor at the Sahlgrenska Academy, University of Gothenburg, Sweden, tel. +46 762 74 48 94, e-mail davide.angeletti@gu.se
Zhao-Shan Chen, PhD student, Chinese Academy of Agricultural Sciences, China, e-mail zhaoshan.chen@gu.se
Qiyun Zhu, Professor, Chinese Academy of Agricultural Sciences, China, email zhuqiyun@caas.cn
Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection, https://doi.org/10.1038/s41467-024-55193-y
Davide Angeletti
photo: Johan Wingborg
Criteria of this press release:
Journalists
Medicine
transregional, national
Research results
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).