idw - Informationsdienst
Wissenschaft
Hereon-Forscher entwickeln ein Energiesystem für autonome Unterwasserfahrzeuge
Autonome Unterwasserroboter, wie zum Beispiel Ozeangleiter, sind wichtige Hilfsmittel in der Meeresforschung. Die meisten tragen Lithium-Batterien in sich, die sie mit Strom versorgen. Doch diese Batterien bringen einige Nachteile mit sich. Deshalb haben Wissenschaftler am Helmholtz-Zentrum Hereon ein neues Energiesystem entwickelt. Mit Wasserstoff als Energieträger ist es deutlich nachhaltiger als Lithiumbatterien und ermöglicht eine größere Reichweite der Ozeangleiter. Die Besonderheit: Mittels Membrantechnologie entzieht es dem Meer Sauerstoff - ähnlich wie die Kiemen eines Fischs.
Ozeangleiter können sich mehrere Wochen lang eigenständig durch das Meer bewegen. Ihre Sensoren messen zum Beispiel Temperatur, Druck, Salzgehalt, Sauerstoffkonzentration oder Strömung. Mit Tauchgängen bis zu 1000 Metern Tiefe ermöglichen sie Messungen, die mit Forschungsschiffen kaum umsetzbar wären. Außerdem ist die Nutzung der Roboter kostengünstiger als die eines Schiffs. Doch die Lithiumbatterien stellen Forschungsteams vor Herausforderungen. Sie gelten als Gefahrgut und dürfen nur unter strengen Sicherheitsauflagen transportiert werden. Das erhöht die Kosten der Forschungsprojekte.
Natur als Inspiration
Dr. Lucas Merckelbach und Dr. Prokopios Georgopanos vom Helmholtz-Zentrum Hereon haben eine Alternative entwickelt. Statt Batterien wollen sie Gleiter mit einer Brennstoffzelle antreiben, die mit Wasserstoff und Sauerstoff Strom erzeugt. Der Wasserstoff soll erst am Einsatzort „getankt“ werden. Als sicherer und effizienter Speicher dient ein Behälter mit Metallhydriden. Diese speichern Wasserstoff, indem sie ihn chemisch in die Metallstruktur einbinden. Der nötige Sauerstoff wird hingegen nicht gespeichert, sondern direkt aus dem Meerwasser entnommen. „Die Natur ist da für uns eine große Inspiration“, sagt Merckelbach. Er arbeitet am Institut für Dynamik der Küstenmeere und nutzt Ozeangleiter selbst für seine Forschung.
Das Konzept hat Merckelbach zusammen mit Prokopios Georgopanos vom Institut für Membranforschung entwickelt. Georgopanos identifizierte eine sauerstoffdurchlässige Membran aus Silikon. Als Teil der Wand des Gleiters funktioniert sie wie künstliche Kiemen. Außen grenzt sie an das sauerstoffhaltige Meerwasser, innen an eine Leitung, die zur Brennstoffzelle führt. Die Sauerstoffkonzentration in der Leitung ist geringer als im Wasser. Dadurch wandert Sauerstoff aus dem Wasser automatisch durch die Membran ins Innere. Dieser Prozess heißt Diffusion. Über einen Luftstrom in der Leitung gelangt der Sauerstoff in die Brennstoffzelle, wo durch Reaktion mit Wasserstoff elektrische Energie entsteht.
Mehr Reichweite und Nachhaltigkeit
„Durch dieses System entfällt die Notwendigkeit einer Sauerstoffspeicherung an Bord. Das eingesparte Gewicht und Volumen kann für zusätzliche Wasserstoffspeicher verwendet werden. So können eine höhere Energiedichte und niedrigere Betriebskosten als bei aktuellen Batterielösungen erzielt werden“, erklärt Georgopanos. Die Gleiter könnten so noch länger unterwegs sein. Außerdem sei Wasserstoff als Energiequelle nachhaltiger als Batterien.
Georgopanos und Merckelbach haben ihr neues Energiesystem bereits patentieren lassen. In ihrem Paper „A Fuel Cell Power Supply System Equipped with Artificial Gill Membranes for Underwater Applications“ präsentieren sie ihren ersten Prototypen. Das Paper ist kürzlich im Fachjournal Advanced Science erschienen. Im Rahmen des MUSE-Projekts optimieren sie das System in den kommenden Jahren weiter. Dafür bekommt Hereon personelle Verstärkung an den Instituten für Membranforschung und Wasserstofftechnologie. MUSE ist ein gemeinsames Projekt mit dem Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) in Bremerhaven und dem GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, bei dem die Meerestechnik und -infrastruktur weiterentwickelt wird. „Diese interdisziplinäre Arbeit, die Kombination von Wissen aus der Küstenforschung, der Membranforschung und der Wasserstofftechnologie ist bei uns am Hereon möglich. Das ist einzigartig“, sagt Georgopanos.
Dr. Lucas Merckelbach
Wissenschaftler
Institut für Dynamik der Küstenmeere
Abteilung für Kleinskalige Physik und Turbulenz
E-Mail: Lucas.Merckelbach@hereon.de
Dr. Prokopios Georgopanos
Wissenschaftler und Abteilungsleiter für Polymertechnologie
Institut für Membranforschung
Abteilung für Polymertechnologie
E-Mail: Prokopios.Georgopanos@hereon.de
https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202410358
https://www.hereon.de/institutes/membrane_research/index.php.de
https://www.hereon.de/institutes/coastal_ocean_dynamics/index.php.de
https://www.hereon.de/institutes/hydrogen_technology/index.php.de
https://hereon.de/innovation_transfer/communication_media/news/110793/index.php....
Das ist der Prototyp des Energiesystems. Im Hintergrund ein Ozeangleiter.
Steffen Niemann/Hereon
Steffen Niemann/Hereon
Criteria of this press release:
Journalists, Scientists and scholars, Students
Energy, Environment / ecology, Materials sciences, Oceanology / climate
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).