idw - Informationsdienst
Wissenschaft
Für die Korrektur von Fehlern in Quantencomputern stehen unterschiedliche Verfahren zur Verfügung. Nicht alle Rechenoperationen lassen sich mit jedem Korrektur-Code ähnlich gut umsetzen. Deshalb hat ein Forschungsteam der Universität Innsbruck gemeinsam mit einem Team der RWTH Aachen und dem Forschungszentrum Jülich ein Verfahren entwickelt und erstmals experimentell umgesetzt, mit dem ein Quantencomputer zwischen zwei Korrektur-Codes hin- und herschalten und so alle Rechenoperationen leichter durchführen und gegen Fehler schützen kann.
Auch Computer machen Fehler. Diese werden mittels technischer Vorkehrungen unterdrückt oder während einer Rechnung erkannt und behoben. Bei Quantencomputern ist dies mit einigem Aufwand verbunden, denn von einem unbekannten Quantenzustand kann keine Kopie erstellt werden. So kann der Zustand auch nicht während der Berechnung mehrfach gespeichert und ein Fehler durch den Vergleich der Kopien erkannt werden. Inspiriert von der klassischen Informatik hat die Quantenphysik ein anderes Verfahren entwickelt, bei dem die Quanteninformation auf mehrere verschränkte Quantenbits verteilt und auf diese Weise redundant gespeichert wird. Wie dies geschieht, ist in sogenannten Korrektur-Codes festgelegt. Bereits 2022 hat ein Team um Thomas Monz vom Institut für Experimentalphysik der Universität Innsbruck und Markus Müller vom Institut für Quanteninformation der RWTH Aachen und dem Peter-Grünberg-Institut des Forschungszentrums Jülich in Deutschland ein universelles Set von Rechenoperationen auf fehlertoleranten Quantenbits umgesetzt und damit gezeigt, wie ein Algorithmus auf einem Quantencomputer programmiert werden kann, sodass Fehler effizient unterdrückt werden. Doch kommen verschiedene Quantenfehlerkorrektur-Codes auch mit verschiedenen Schwierigkeiten. Ein Theorem besagt, dass sich mit keinem Korrektur-Code alle für das frei programmierbare Rechnen mit den logischen Quantenbits notwendigen Gatteroperationen leicht und gegen Fehler geschützt umsetzen lassen.
Quantengatter werden mit verschiedenen Codes realisiert
Um dieses Problem zu umgehen, hat die Forschungsgruppe um Markus Müller ein Verfahren entwickelt, mit dem der Quantencomputer zwischen zwei Quantenfehlerkorrektur-Codes auf fehlertolerante Art und Weise hin- und herschalten kann. „Auf diese Weise kann der Quantencomputer immer dann auf den zweiten Code umschalten, wenn im ersten Code ein schwierig zu realisierendes logisches Gatter auftaucht. So lassen sich alle für das Rechnen benötigten Gatter leichter realisieren“, erklärt Friederike Butt, Doktorandin in der Arbeitsgruppe von Markus Müller. Die Theoretische Physikerin hat die dem Experiment zugrunde liegenden Quantenschaltkreise entwickelt und diese in enger Zusammenarbeit mit der Forschungsgruppe um Thomas Monz in Innsbruck umgesetzt. „Gemeinsam ist es uns erstmals gelungen, mit zwei kombinierten Quantenfehlerkorrektur-Codes einen universellen Satz von Quantengattern auf einem Ionenfallen-Quantencomputer zu realisieren“, freut sich Doktorand Ivan Pogorelov aus der Innsbrucker Forschungsgruppe.
„Grundlage für diesen Erfolg ist unsere langjährige, gute Zusammenarbeit mit dem Team um Markus Müller“, sagt Thomas Monz, der den theoretischen Physiker noch aus dessen Promotionszeit an der Universität Innsbruck kennt.
Die Ergebnisse der aktuellen Studie wurden in der Fachzeitschrift Nature Physics veröffentlicht. Finanziell gefördert wurden die Forschungen unter anderem vom Österreichischen Wissenschaftsfonds FWF, der Forschungsförderungsgesellschaften FFG und DFG, der Europäischen Union, der Bayerischen Staatsregierung und der Industriellenvereinigung Tirol.
Thomas Monz
Institut für Experimentalphysik
Universität Innsbruck
+43 512 507 52452
thomas.monz@uibk.ac.at
https://www.quantumoptics.at/
Markus Müller
Institut für Quanteninformation
RWTH Aachen
Peter-Grünberg-Institut 2
Forschungszentrum Jülich
+49 241 80 28412
m.mueller@physik.rwth-aachen.de
https://www.quantuminfo.physik.rwth-aachen.de/
Experimental fault-tolerant code switching. Ivan Pogorelov, Friederike Butt, Lukas Postler, Christian D. Marciniak, Philipp Schindler, Markus Müller, and Thomas Monz. Nature Physics 2025. DOI: 10.1038/s41567-024-02727-2 [arXiv: https://arxiv.org/pdf/2403.13732]
http://www.uibk.ac.at/de/newsroom/2022/quantencomputer-lernt-fehlerfrei-rechnen/ - Quantencomputer lernt fehlerfrei rechnen
Mit zwei Codes leichter fehlerfrei rechnen
Helene Hainzer
Helene Hainzer
Criteria of this press release:
Journalists, all interested persons
Information technology, Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).