idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/24/2025 11:00

Calculating error-free more easily with two codes

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    Various methods are used to correct errors in quantum computers. Not all operations can be implemented equally well with different correction codes. Therefore, a research team from the University of Innsbruck, together with a team from RWTH Aachen and Forschungszentrum Jülich, has developed a method and implemented it experimentally for the first time, with which a quantum computer can switch back and forth between two correction codes and thus perform all computing operations protected against errors.

    Computers also make mistakes. These are usually suppressed by technical measures or detected and corrected during the calculation. In quantum computers, this involves some effort, as no copy can be made of an unknown quantum state. This means that the state cannot be saved multiple times during the calculation and an error cannot be detected by comparing these copies. Inspired by classical computer science, quantum physics has developed a different method in which the quantum information is distributed across several entangled quantum bits and stored redundantly in this way. How this is done is defined in so-called correction codes. In 2022, a team led by Thomas Monz from the Department of Experimental Physics at the University of Innsbruck and Markus Müller from the Department of Quantum Information at RWTH Aachen and the Peter Grünberg Institute at Forschungszentrum Jülich in Germany implemented a universal set of operations on fault-tolerant quantum bits, demonstrating how an algorithm can be programmed on a quantum computer so that errors can be corrected efficiently. However, different quantum error correction codes also come with different difficulties. A theorem states that no correction code can implement all the gate operations required for freely programmable computations with the logical quantum bits easily and protected against errors.

    Quantum gates are realized with different correction codes

    To circumvent this difficulty, Markus Müller's research group has established a method that allows the quantum computer to switch back and forth between two correction codes in an error-tolerant manner. “In this way, the quantum computer can switch to the second code whenever a logic gate that is difficult to realize appears in the first code. This makes it easier to implement all the gates required for computing,” explains Friederike Butt, a doctoral student in Markus Müller's research group. She developed the quantum circuits on which the experiment is based and implemented them in close collaboration with Thomas Monz's research group in Innsbruck. “Together, we have succeeded for the first time in realizing a universal set of quantum gates on an ion trap quantum computer using two combined quantum error correction codes,” says PhD student Ivan Pogorelov from the Innsbruck research group.

    “This result is based on our many years of good collaboration with Markus Müller's team,” says Thomas Monz, who knows the theoretical physicist from his doctoral studies at the University of Innsbruck.

    The findings of the current study were published in the journal Nature Physics. The research was financially supported among others by the Austrian Science Fund FWF, the Austrian Research Promotion Agency FFG, the German DFG, the Bavarian State Government, the European Union and the Federation of Austrian Industries Tyrol.


    Contact for scientific information:

    Thomas Monz
    Department of Experimental Physics
    University of Innsbruck
    +43 512 507 52452
    thomas.monz@uibk.ac.at
    https://www.quantumoptics.at/

    Markus Müller
    Department of Quantum Information
    RWTH Aachen
    Peter Grünberg Institute 2
    Forschungszentrum Jülich
    +49 241 80 28412
    m.mueller@physik.rwth-aachen.de
    https://www.quantuminfo.physik.rwth-aachen.de/


    Original publication:

    Experimental fault-tolerant code switching. Ivan Pogorelov, Friederike Butt, Lukas Postler, Christian D. Marciniak, Philipp Schindler, Markus Müller, and Thomas Monz. Nature Physics 2025. DOI: 10.1038/s41567-024-02727-2 [arXiv: https://arxiv.org/pdf/2403.13732]


    More information:

    https://www.uibk.ac.at/en/newsroom/2022/error-free-quantum-computing-gets-real/ - Error-Free Quan­tum Com­put­ing Gets Real


    Images

    Calculating error-free more easily with two codes
    Calculating error-free more easily with two codes
    Helene Hainzer
    Helene Hainzer


    Criteria of this press release:
    Journalists, all interested persons
    Information technology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).