idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/25/2025 13:34

Neurons gather together for vision

Dr. Stefanie Merker Kommunikation (PR)
Max-Planck-Institut für biologische Intelligenz

    For over 50 years, it has been known that in the cerebral cortex of many mammals, neurons with the same function are grouped into columns. Now, for the first time, researchers at the Max Planck Institute for Biological Intelligence have been able to demonstrate these structures in the visual cortex of mice: here, neurons that process stimuli from the same eye form clusters. This adds to our general understanding of the structural organization of the brain – and may help to solve the mystery of the columnsˈ function.

    Motion, color, light and shadow: everything we see is the result of complex computations in our brain – or, more precisely, in the visual cortex. This is where stimuli that hit our retina are broken down into their individual components, processed and assembled into what we perceive. The neurons responsible for this process can each perform different tasks: for example, some mainly process motion, others lines or colors.

    In the 1960s, David Hubel and Torsten Wiesel famously discovered that in the visual cortex, neurons with the same function are organized spatially in columns. This finding, along with their other discoveries about visual processing, was awarded the Nobel Prize in Physiology or Medicine in 1981. These so-called cortical columns have been considered elementary building blocks in the cerebral cortex of many mammals – including humans. However, such structures had not yet been detected in the visual cortex of many smaller animals, such as mice. As a result, cortical columns were thought to be reserved for mammals with more complex brains and particularly good eyesight.

    A team led by Mark Hübener and Tobias Bonhoeffer has now shown for the first time that neurons are also arranged in columns in the visual cortex of mice. Using a technique called 2-photon microscopy, they discovered clusters of neurons that process visual information coming from the same eye. These clusters were most distinct in the middle layers of the visual cortex. However, the spatial proximity of cells processing input from the same eye continued in the overlying and underlying layers, thereby forming so-called ocular dominance columns.

    Although the columnar organization of the cerebral cortex was described more than half a century ago, the function of these columns is still a matter of speculation. “A possible explanation for the cortical columns can be illustrated by where fans sit on the stands in a football stadium,” says Pieter Goltstein, the study`s first author. “If all the fans of one team are sitting together and cheering for their team at the same time, it is much more powerful than if the fans are spread out all over the stadium. It is possible that neurons with the same function can also work more efficiently when they are close together.”

    The new study not only advances our general understanding of how the brain is organized. It also makes it possible to study the function of the cortical column in the mouse model organism – to perhaps ultimately answer the question what columns are good for.


    Contact for scientific information:

    Prof. Dr. Mark Hübener
    Research Group Leader
    MPI for Biological Intelligence
    Mark.huebener@bi.mpg.de

    Dr. Pieter Goltstein
    Postdoc
    MPI for Biological Intelligence
    Pieter.goltstein@bi.mpg.de


    Original publication:

    A column-like organization for ocular dominance in mouse visual cortex
    Pieter M. Goltstein, David Laubender, Tobias Bonhoeffer, & Mark Hübener

    Nature communications, online February 25th, 2025

    DOI: 10.1038/s41467-025-56780-3


    More information:

    https://www.bi.mpg.de/bonhoeffer - Department website


    Images

    3D rendering of a section of the visual cortex in the mouse. Neurons that process information from one eye are arranged in columns (red), which are surrounded by neurons processing information from the other eye (blue).
    3D rendering of a section of the visual cortex in the mouse. Neurons that process information from o ...

    Copyright: © MPI for Biological Intelligence / Pieter Goltstein


    Attachment
    attachment icon Rotating 3D rendering of a section of the visual cortex in the mouse. Neurons that process information from one eye are arranged in columns (red).

    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).