idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/06/2025 10:15

Licht ins Dunkel: Neue Methode zur Erforschung des Axolotl-Gehirns entwickelt

Manel Llado IMBA Communications
IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

    Der Axolotl ist ein ausgezeichnetes Modell, um Regeneration zu erforschen. Allerdings gestaltete sich die Untersuchung seines Nervensystems bislang als schwierig, da die geeigneten Werkzeuge zur Visualisierung und Manipulation neuronaler Schaltkreise fehlten. In einer in PNAS veröffentlichten Studie stellen Katharina Lust und Elly Tanaka vom Institut für Molekulare Biotechnologie (IMBA) der Österreichischen Akademie der Wissenschaften nun eine Methode vor, mit der Gene gezielt in Axolotl-Neuronen eingeschleust werden können. Dies ermöglicht es, die neuronale Organisation des Axolotl sichtbar zu machen und detailliert zu untersuchen.

    Die außergewöhnlichen regenerativen Fähigkeiten des Axolotl (Ambystoma mexicanum) – diese Salamanderart kann verlorene Gliedmaßen nachwachsen lassen und komplexe Organe wie die Netzhaut und das Gehirn reparieren – machen den Axolotl zu einem idealen Modell, um sowohl die Bildung neuronaler Schaltkreise als auch deren Regeneration nach einer Verletzung zu untersuchen. Bisher wurde die Gehirnregeneration beim Axolotl mit klassischen Methoden erforscht, beispielsweise durch den Einsatz von Tracern und Antikörpern. Allerdings fehlten den Forscher:Innen bislang die Werkzeuge, um die Dynamik der Regeneration von neuronalen Schaltkreisen zu erfassen, die funktionelle Regeneration zu untersuchen und die neuronale Funktion im Axolotl-Gehirn gezielt zu manipulieren.

    Nun präsentieren Katharina Lust und Elly Tanaka vom Institut für Molekulare Biotechnologie (IMBA) der Österreichischen Akademie der Wissenschaften eine effiziente Methode, bei der Gene mithilfe bestimmter Viren in Axolotl-Neuronen eingeschleust werden. Dadurch können die Forscher:Innen die Nervenzellen dynamisch visualisieren und neue Genie gezielt in Nervenzellen übertragen. Ihre Ergebnisse wurden in PNAS am 5 März veröffentlicht.

    Axolotl-Neuronen zum Leuchten bringen

    Gene können mithilfe verschiedener Methoden in Zellen eingebracht werden, beispielsweise durch die Verwendung harmloser Viren als Genfähren. Bisher war es allerdings nicht gelungen, Gene durch Viren in Axolotl-Neuronen einzuschleusen. In der jetzt veröffentlichten Studie zeigten Lust und Tanaka zum ersten Mal, dass Adeno-assoziierte virale Vektoren (AAV) effizient Transgene in Axolotl-Neuronen einschleusen können. Durch das Testen verschiedener AAV-Serotypen – Varianten, die auf unterschiedliche Zelltypen abzielen – identifizierten die Wissenschaftlerinnen den am besten geeigneten Serotyp für die Übertragung von Transgenen in Axolotl-Neuronen.

    Mithilfe dieser Methode schleusten die Wissenschaftlerinnen den fluoreszierenden Marker GFP in Nervenzellen eines lebenden Axolotls ein. Dadurch konnten die Forscherinnen verschiedene Neuronentypen fluoreszierend markieren und die Projektionen sichtbar machen, die die Neuronen miteinander verbinden.


    Vom Auge zum Gehirn - und zurück

    Die Visualisierung neuronaler Verbindungen ermöglicht es Wissenschaftler:Innen, die Schaltkreise zu kartieren, die verschiedene Gehirnbereiche miteinander verknüpfen. Mithilfe der viralen Einbringung von GFP in die Netzhaut des Axolotl konnten Lust und Tanaka die Verbindungen kartieren, über die Netzhautneuronen visuelle Informationen an verschiedene Gehirnregionen weiterleiten. Zudem identifizierten sie auch neuronale Projektionen in die entgegengesetzte Richtung – vom Gehirn zur Netzhaut –, was darauf hindeutet, dass das Gehirn die Funktion der Netzhaut beeinflusst und feinabstimmt.

    „Diese Technologie eröffnet eine neue Möglichkeit, neuronale Aktivität in vivo im Gehirn sichtbar zu machen und zu verfolgen, wie sich neuronale Schaltkreise nach einer Verletzung regenerieren“, erklärt Erstautorin Katharina Lust, Postdoktorandin im Labor von Elly Tanaka.


    Durchbruch für die Axolotl-Hirnforschung  

    Neben der Möglichkeit, Neuronen im Axolotl-Gehirn dynamisch zu visualisieren, etabliert diese Studie virale Vektoren als leistungsstarke Werkzeuge, um gezielt neue Gene in Axolotl-Neuronen einzubringen und die neuronale Organisation zu untersuchen. 

    „Virale Vektoren könnten eingesetzt werden, um neuronale Schaltkreise zu manipulieren oder die Rolle spezifischer Gene bei der Regeneration des Axolotl-Gehirns zu erforschen“, erklärt Elly Tanaka, wissenschaftliche Direktorin des IMBA und korrespondierende Autorin der Studie. „Dieses Werkzeug eröffnet experimentelle Möglichkeiten, die zuvor beim Axolotl unerreichbar waren. Damit etabliert sich der Axolotl als ein zentrales Wirbeltiermodell in der molekularen Neurowissenschaft und hilft uns, die essenziellen Eigenschaften des Wirbeltiergehirns besser zu verstehen.“


    Contact for scientific information:

    Sylvia Weinzettl

    IMBA- Institut für Molekulare Biotechnologie GmbH

    Dr. Bohr-Gasse 3, 1030 Wien

    T: +43 1 79044 – 4403

    Mail: sylvia.weinzettl@imba.oeaw.ac.at

    www.imba.oeaw.ac.at


    Original publication:

    Adeno-associated viruses for efficient gene expression in the axolotl nervous system. Katharina Lust & Elly Tanaka. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2421373122


    More information:

    https://www.oeaw.ac.at/imba-de/ueber-imba/newsroom/news/licht-ins-dunkel-neue-me...


    Images

    Durch virale Genübertragung können neuronale Verbindungen im Axolotl-Gehirn fluoreszierend markiert werden.
    Durch virale Genübertragung können neuronale Verbindungen im Axolotl-Gehirn fluoreszierend markiert ...
    Katharina Lust/IMBA
    Katharina Lust/IMBA


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).