idw - Informationsdienst
Wissenschaft
Eine blütenförmige Mikrostruktur aus einer Nickel-Eisen-Legierung kann Magnetfelder lokal verstärken. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
Dr. Anna Palau vom Institut de Ciencia de Materials de Barcelona (ICMAB) hat ein spezielles Metamaterial entwickelt, das unter dem Rasterelektronenmikroskop winzigen Blüten ähnelt. Die „Blütenblätter“ bestehen aus Streifen einer ferromagnetischen Nickel-Eisen-Legierung. Die Mikroblüten lassen sich in unterschiedlichen Geometrien herstellen, nicht nur Innen- und Außenradien, sondern auch Anzahl und Breite der Blütenblätter sind variabel. Diese blütenförmige Geometrie bewirkt, dass sich die Feldlinien eines äußeren Magnetfeldes im Zentrum der „Blüte“ konzentrieren, was zu einem lokal deutlich stärkeren Magnetfeld führt.
„Metamaterialien sind künstlich hergestellte Materialien mit Mikrostrukturen, deren Abmessungen kleiner sind als die elektromagnetischen oder thermischen Wellen, die sie manipulieren sollen“, erklärt Anna Palau. Die Physikerin arbeitet an magnetischen Mikrostrukturen, die in der Datenspeicherung, Informationsverarbeitung, Biomedizin, Katalyse und magnetischen Sensorik eingesetzt werden können. So erhöhen solche Metamaterialien die Empfindlichkeit magnetischer Sensoren, indem sie das zu detektierende Magnetfeld verstärken.
Anna Palau, ihr Student Aleix Barrera und Sergio Valencia haben dies nun an der XPEEM-Versuchsstation von BESSY II untersucht. Sie platzierten einen Kobaltstab im Zentrum verschiedener Mikroblüten als Sensor für das Magnetfeld und kartierten die magnetischen Domänen im Inneren des Kobaltstabs. „Durch die Anpassung der geometrischen Parameter wie Form, Größe und Anzahl der Blütenblätter kann das magnetische Verhalten umgeschaltet und gesteuert werden“, sagt Valencia. Dadurch könnte die Empfindlichkeit eines magnetoresistiven Sensors um mehr als zwei Größenordnungen erhöht werden.
Diese Innovation eröffnet neue technologische Möglichkeiten, um die Leistung kleiner magnetischer Sensoren zu verbessern und multifunktionale magnetische Komponenten zu entwickeln. In Zukunft können solche Mikrostrukturen dazu verwendet werden, lokal viel höhere Magnetfelder zu erzeugen, was auch für die experimentelle XPEEM-Station bei BESSY II von Interesse ist. Denn das XPEEM ist ein Photoemissionselektronenmikroskop, bei dem die emittierten Elektronen das „Bild“ erzeugen. Magnetfelder lenken diese Elektronen jedoch ab, so dass es schwierig ist, ein stärkeres Magnetfeld anzulegen. „Das maximale Magnetfeld, das wir bisher anwenden können, liegt bei etwa 25 Millitesla (mT). Mit dem Magnetfeldkonzentrator, der das Feld nur lokal verstärkt, können wir problemlos fünfmal größere Felder erreichen. Das ist sehr spannend, weil wir damit magnetische Systeme unter Bedingungen untersuchen können, die bisher nicht möglich waren“, sagt Valencia.
sergio.valencia@helmholtz-berlin.de
ACS Nano (2025): On-Chip Planar Metasurfaces for Magnetic Sensors with Greatly Enhanced Sensitivity
Aleix Barrera, Emile Fourneau*, Natanael Bort-Soldevila, Jaume Cunill-Subiranas, Nuria Del-Valle, Nicolas Lejeune, Michal Staňo, Alevtina Smekhova, Narcis Mestres, Lluis Balcells, Carles Navau, Vojtěch Uhlíř, Simon J. Bending, Sergio Valencia, Alejandro V. Silhanek*, Anna Palau*
DOI: 10.1021/acsnano.5c00422
Criteria of this press release:
Business and commerce, Journalists, Scientists and scholars, Students
Physics / astronomy
transregional, national
Research results, Transfer of Science or Research
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).