idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/25/2025 08:00

Following the tracks of an extremely adaptive bacterium

Maria Schulz Pressestelle
Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (Leibniz-HKI)

    Investigations of the genome of Pseudomonas syringae reveal unique natural products

    A recent study by an interdisciplinary research team shows how a soil bacterium can become a source of inspiration in the search of new active substances. Genomic analyses of the plant pathogen Pseudomonas syringae shed light on its chemical diversity. Two newly discovered families of natural products, the syrilipamides and secimides, are – in combination – particularly harmful to amoebae and the secimides are also active against fungi.

    Diversity in the genome reflects adaptability

    The plant pathogen Pseudomonas syringae causes major damage in agriculture. However, it also produces a large number of biologically active natural products. These could help the bacterium to adapt to changing environmental conditions and displace competitors. In a comprehensive genomic analysis, the researchers examined 18 representative strains of the bacterial species and analyzed their genetic potential to produce natural products using state-of-the-art bioinformatics methods.

    They were able to identify a total of 231 so-called biosynthetic gene clusters. These gene clusters contain enzyme-coding genes that are responsible for the synthesis of natural products. Genes for nonribosomal peptide synthetases (NRPS) were particularly abundant. NRPS produce natural products that, for example, help the bacterium to assert itself against competitors and adapt to its environment.

    Natural products with special properties

    Through a combination of bioinformatic analyses, chemical structure determination and biological activity tests, two new families of natural products were identified and characterized: the syrilipamides and the secimides. Both are low molecular weight compounds produced by Pseudomonas syringae. These molecules show remarkable toxicity towards competing microorganisms, especially against fungi and also amoebae. Their selective effect could be used in the future for the protection of plants or as a starting point for the development of new bioactive substances.

    SecA enzyme expands chemical repertoire

    “We have also discovered a previously unknown enzyme: SecA,” says Shuaibing Zhang, first author of the study. “SecA adds chlorine atoms to specific organic compounds, which increases the structural complexity and activity of the resulting compounds,” adds Pierre Stallforth, head of the project. He is a professor at the University of Jena and head of department at the Leibniz-HKI. Such chlorinated natural products play an important role in pharmaceutical research and could be used in the future for the development of new antibiotics, cancer therapies or plant protection products.

    New perspectives for biotechnology

    With their effect against amoebae and fungi, the newly discovered natural products could be of interest to both agriculture and pharmaceutical research. First of all, however, the team was interested in the ecological function of these molecules. They help Pseudomonas syringae, a versatile bacterium, plant pathogen, and producer of bioactive compounds, to defend itself against predators and competition and to adapt to niches in its natural habitat. The formation of microbial consortia in nature and the function of the natural products involved contribute to the understanding of the complex ecological interactions in our environment and are the research focus of the Jena Cluster of Excellence “Balance of the Microverse”. Scientists from the Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI) and the Friedrich Schiller University Jena were involved in the work.

    The project was funded by the Werner Siemens Foundation, the Leibniz Association and the German Research Foundation as part of the Collaborative Research Center ChemBioSys and the Cluster of Excellence “Balance of the Microverse”.


    Contact for scientific information:

    Prof. Dr. Pierre Stallforth
    Paleobiotechnology, Head
    +49 3641 532-1527
    pierre.stallforth@leibniz-hki.de


    Original publication:

    Zhang S, Huang Y, Nachawati R, Huber P, Walther G, Gregor L, Vilotijević I, Stallforth P (2025) Pangenome Analysis of the Plant Pathogen Pseudomonas syringae Reveals Unique Natural Products for Niche Adaptation. Angew Chem Int Ed 64 (25), e202503679, https://doi.org/10.1002/anie.202503679


    Images

    Pangenome analysis of Pseudomonas syringae strains (center) has made it possible to find new compounds (outside).
    Pangenome analysis of Pseudomonas syringae strains (center) has made it possible to find new compoun ...

    Copyright: Luo Yu, Leibniz-HKI


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).