idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/20/2026 07:40

Compact AI-based hyperspectral camera enables new industrial applications

Franka Balvin Marketing & Kommunikation
Fraunhofer-Institut für Photonische Mikrosysteme (IPMS)

    The OASYS project focuses on optoelectronic sensors for application-oriented systems. In the subproject A1 a team of scientists and industry experts is developing an ultra-compact, energy-efficient hyperspectral camera that uses artificial intelligence to perform complex material and quality analyses in real time. The integrated spectrometer records spectral characteristics, revealing chemical properties that are invisible to the human eye. This enables defects in food or the composition of textiles or plastics to be identified quickly and accurately.

    The novel hyperspectral camera offers wide-ranging applications in industrial and agricultural processes. Its innovative approach combines conventional 2D imaging with artificial intelligence and spectral analysis. A standard 2D camera first captures a high-resolution image of the target object. Artificial intelligence then analyzes the image in real time, automatically identifying regions of interest. The integrated spectrometer subsequently performs spectral analysis exclusively at these selected positions, determining the chemical composition. This intelligent approach significantly enhances the efficiency of hyperspectral measurements. Rather than capturing spectral data across the entire image - a computationally intensive process - the system analyzes only the relevant measurement points. This targeted method substantially reduces data volumes, energy consumption, and processing time.

    The information obtained in this way supports, for example, the reliable sorting of textiles and plastics. It also increases the reliability of identifying counterfeit products. Additionally, it improves quality control in food processing by detecting pressure marks and defects and enables an accurate assessment of plant condition and nutrient requirements in agriculture. Automated evaluation enables faster and more reliable decision-making. At the same time, processes become more sustainable, and economic resources are used more efficiently.

    “With the compact hyperspectral camera from OASYS A1, we are developing technology that can be used directly in production lines, sorting facilities, or in the field for analytical processes,” explains Heinrich Engelke, project manager at the Fraunhofer Institute for Photonic Microsystems IPMS. “The combination of miniaturization, energy efficiency and artificial intelligence opens up completely new applications, while also making an important contribution to resource conservation and process reliability.”
    The components developed in the project will form the basis for future sensor systems that could significantly improve industry, recycling, agriculture, and the food sector.
    About the Project

    The OASYS research program runs from September 2023 to August 2028, covering a period of five years, and is funded by the German Federal Ministry of Research, Technology, and Space (BMFTR) with around 12.5 million euros. Brandenburg University of Technology Cottbus-Senftenberg (BTU) is coordinating the project. In addition to Fraunhofer IPMS, the consortium also includes the Ferdinand Braun Institute FBH and the IHP - Leibniz Institute for Innovative Microelectronics. The joint commitment to OASYS, particularly in project A1, highlights Fraunhofer IPMS's leading role in developing innovative optical system technologies.

    Further information about the OASYS project and its partners is available on the website https://oasys-cottbus.com/en/home-english/.

    ___
    About Fraunhofer IPMS
    Fraunhofer IPMS is a leading international research and development service provider for electronic and photonic microsystems in the application fields of Smart Industrial Solutions, Bio and Health, Mobility as well as Green and Sustainable Microelectronics. Research focuses on customer-specific miniaturized sensors and actuators, MEMS systems, microdisplays and integrated circuits as well as wireless and wired data communication. Services range from consulting and design to process development and pilot series production.


    Contact for scientific information:

    Heinrich Engelke heinrich.engelke@ipms.fraunhofer.de


    Images

    Heinrich Engelke at work: Determining textile types using an ultra-compact intelligent hyperspectral camera
    Heinrich Engelke at work: Determining textile types using an ultra-compact intelligent hyperspectral ...
    Source: Sascha Thor (BTU)
    Copyright: ©BTU / Fraunhofer IPMS

    Display of spectral image in the field.
    Display of spectral image in the field.

    Copyright: © Fraunhofer IPMS


    Criteria of this press release:
    Journalists
    Electrical engineering, Materials sciences, Zoology / agricultural and forest sciences
    transregional, national
    Miscellaneous scientific news/publications, Transfer of Science or Research
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).