idw - Informationsdienst
Wissenschaft
Wohin kein Sternenlicht dringt, da entsteht Neues: Ein internationales Forschungsteam hat erstmals die Wirkung kosmischer Strahlung in einer kalten Molekülwolke direkt gemessen. Die Beobachtung zeigt, wie stark energiereiche Teilchen das Gas in diesen lichtlosen Regionen beeinflussen, in denen Sterne entstehen. Dr. Brandt Gaches, Leiter der Emmy-Noether-Gruppe „Towards the Next Generation in Cosmic Ray Astrochemistry” an der Universität Duisburg-Essen, war Teil des Teams, das diese Effekte mit dem James-Webb-Weltraumteleskop untersucht hat, und lieferte astrochemische Modelle der kosmischen Strahlungschemie. Nature Astronomy berichtet.
In kalten, dichten Wolken aus Gas und Staub entstehen Sterne und Planeten. Eine dieser Wolken heißt Barnard 68 – sie liegt rund 500 Lichtjahre von der Erde entfernt im Sternbild Schlangenträger. Ihr Inneres ist 9 Kelvin (−264 °C) kalt und so dicht und damit undurchsichtig, dass selbst Licht kaum hindurchdringt. Hier spielt kosmische Strahlung eine wichtige Rolle: hochenergetische, geladene Teilchen aus dem All, die das Gas ionisieren* und so seine Chemie und Temperatur regulieren. Das kann in diesen Regionen komplexe chemische Prozesse anstoßen.
Die Bedeutung der kosmischen Strahlung wird angegeben als Ionisationsrate der kosmischen Strahlung – also die Rate, mit der molekularer Wasserstoff (H₂) durch kosmische Strahlung ionisiert wird (pro Molekül pro Sekunde). Die Ionisationsrate kosmischer Strahlung ist einer der grundlegenden Parameter in der Chemie des molekularen Universums. Bislang konnte diese nur geschätzt werden, hauptsächlich auf Basis von Modellen und Beobachtungen chemischer Linien. „Forschende mussten Umwege gehen, indem sie seltene Moleküle wie protonierten molekularen Wasserstoff oder protonierte Ionen beobachteten und anschließend versuchten, aus deren Konzentrationen die Ionisationsrate zu berechnen“, erklärt Gaches. Doch solche Modelle hängen von vielen Annahmen ab – über Dichte, Temperatur und Reaktionswege – und führen zu stark schwankenden Ergebnissen.
Forschende haben kürzlich die Idee entwickelt, das neue, extrem empfindliche James-Webb-Weltraumteleskop zu nutzen, um extrem schwache Infrarotlinien zu messen, die entstehen, wenn kosmische Strahlen das Gas direkt anregen. Das theoretische Konzept dessen reicht Jahrzehnte zurück, aber direkte Beobachtungen sind Astronomen bisher nicht gelungen. Frühere Studien, darunter auch Arbeiten von Gaches, haben anhand chemischer Modelle gezeigt, dass diese Nahinfrarotlinien ein zuverlässiger Indikator für die Ionisierung durch kosmische Strahlen sind.
Ein internationales Team unter der Leitung des Technion Israel Institute of Technology hat nun drei dieser Linien eindeutig nachgewiesen – genau wie es theoretische Modelle seit Jahrzehnten vorhergesagt hatten. Als das Spektrometer des James-Webb-Weltraumteleskops auf Barnard 68 gerichtet wurde, detektierte es ein schwaches Leuchten von direkt angeregtem molekularem Wasserstoff (H₂). Dies ist das erste Mal, dass durch Beobachtungen bestätigt wurde, dass kosmische Strahlen direkt messbare Infrarotlinien anregen. Eine Folgestudie, die derzeit zur Veröffentlichung vorbereitet wird, nutzte diese Beobachtungen, um direkt zu messen, wie schnell kosmische Strahlen in dichten interstellaren Wolken Energie verlieren.
Diese Beobachtungen eröffnen neue Möglichkeiten für die Untersuchung der Physik und Chemie kosmischer Strahlung in Sternentstehungsgebieten. Künftige Beobachtungen mit dem James-Webb-Weltraumteleskop wurden ebenfalls genehmigt, um diese Analyse auf eine weitere nahegelegene Wolke auszuweiten.
* Beim Ionisieren werden Atomen und Molekülen Elektronen „entrissen“. Die übrigbleibenden Ionen sind positiv geladen.
Dr. Brandt Gaches, Towards the Next Generation in Cosmic Ray Astrochemistry, Tel. 0203/37 9-3327, brandt.gaches@uni-due.de
https://doi.org/10.1038/s41550-025-02771-9
Criteria of this press release:
Journalists, Scientists and scholars, Students, all interested persons
Chemistry, Physics / astronomy
transregional, national
Research results, Scientific Publications
German

You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).