idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/23/2019 19:00

Antibiotics with Novel Mechanism of Action Discovered

Kurt Bodenmüller Kommunikation
Universität Zürich

    Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics. Swiss researchers co-headed by the University of Zurich have now discovered a new class of antibiotics with a unique spectrum of activity and mechanism of action – a major step in the fight against antimicrobial resistance. By disrupting outer membrane synthesis, the antibiotics effectively kill Gram-negative bacteria.

    The rapid emergence of antimicrobial resistance is a matter of global concern. According to the World Health Organization (WHO), particularly Gram-negative bacteria like Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacteriaceae that are resistant to the carbapenem and cephalosporin antibiotics, pose a growing threat to human health. These pathogens can cause severe and often life-threatening infections. The last new class of antibiotics to reach the market against these microorganisms, the fluoroquinolones, dates back to the 1960s. Novel antibiotics with new mechanisms of action against Gram-negative bacteria are urgently needed, especially because resistance against the last resort antibiotic colistin is on a global rise.

    Novel family of antibiotics against dangerous bacteria

    Swiss research teams headed by the University of Zurich (UZH) and Polyphor AG now report the discovery and characterization of a new family of synthetic antibiotics that possess broad-spectrum anti-Gram-negative antimicrobial activity. "The new antibiotics interact with essential outer membrane proteins in Gram-negative bacteria", says John Robinson from the UZH Department of Chemistry, who co-headed the study. "According to our results, the antibiotics bind to complex fat-like substances called lipopolysaccharides and to BamA, an essential protein of the outer membrane of Gram-negative bacteria", Robinson adds.

    Disruption of outer membrane synthesis via unexploited mechanism of action

    BamA is the main component of the so-called ß-barrel folding complex (BAM), which is essential for outer membrane synthesis. After targeting this essential outer membrane protein, the antibiotics destroy the integrity of the bacterial membranes and the cells burst. The outer membrane of Gram-negative bacteria has the important function to protect the cells from toxic environmental factors, such as antibiotics. It is also responsible for the uptake and export of nutrients and signaling molecules. "Despite its critical importance, so far no clinical antibiotics target these key proteins required for outer membrane biogenesis", Robinson says.

    Lead molecule in preclinical studies

    The research was carried out in close collaboration with Polyphor AG, a former UZH start-up company that was founded in 1996. The clinical stage biopharmaceutical company based in Allschwil now plans to progress one compound into human clinical trials. "POL7306, a first lead molecule of the novel antibiotics class, is now in preclinical development", says Daniel Obrecht, chief scientific officer at Polyphor and co-head of the work.

    National Research Programme "Antimicrobial Resistance" (NRP 72)

    This study published in "Nature" was done by the University of Zurich and Polyphor AG, along with interdisciplinary groups in the University of Basel and the ETH Zurich. The work also falls within the framework of the National Research Programme "Antimicrobial Resistance" (NRP 72). It is part of the project "The molecular mechanism of outer membrane protein insertion by BamA and its role as a target for new antibiotics" headed by Prof. Sebastian Hiller from the Biozentrum of the University of Basel. More information: www.nrp72.ch


    Contact for scientific information:

    Prof. em. Dr. John A. Robinson
    Department of Chemistry
    University of Zurich
    Phone: +41 79 438 23 33
    E-mail: john.robinson@chem.uzh.ch


    Original publication:

    Anatol Luther et. al. Chimeric Peptidomimetic Antibiotics Against Gram-Negative Bacteria. Nature. 23 October 2019. DOI: 10.1038/s41586-019-1665-6


    Images

    Escherichia coli cells treated with a novel chimeric peptidomimetic antibiotic. Cells in blue are alive while green cells are already killed by the antibiotic (cell lysis).
    Escherichia coli cells treated with a novel chimeric peptidomimetic antibiotic. Cells in blue are al ...
    Matthias Urfer, UZH
    None


    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research projects, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).