idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Thema Corona

Imagefilm
Science Video Project
idw-News App:

AppStore



Share on: 
03/23/2021 06:19

Rodenticides in the environment pose threats to birds of prey

Dipl. Soz. Steven Seet Wissenschaftskommunikation
Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V.

    Over the past decades, the increased use of chemicals in many areas led to environmental pollution - of water, soil and also wildlife. In addition to plant protection substances and human and veterinary medical drugs, rodenticides have had toxic effects on wildlife.

    A new scientific investigation from scientists of the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW), the Julius Kühn Institute (JKI) and the German Environment Agency (Umweltbundesamt – UBA) demonstrate that these substances are widely found in liver tissues of birds of prey from Germany. Anticoagulant rodenticides, commonly used to kill rodents in agriculture and forestry, were frequently detected, particularly in birds of prey close to or in urban environments. Especially northern goshawks in the urban conurbation of Berlin and red kites in all habitats were frequently exposed to rodenticides. Evidence of rodenticides in white-tailed sea eagles demonstrated that scavengers occupying habitats more distant from human-modified landscapes are subjected to exposure as well. The results, which were supported by WWF Germany, are published in the scientific journal “Environmental Research”.

    Europe’s bird populations currently experience a substantial decline. Among the drivers of this decline are continued urbanisation, growing intensification of agriculture, the massive decline of insect populations as well as chemical pollution linked to the aforementioned processes of land use. “Raptors are known to be particularly sensitive to bioaccumulating pollutants”, says Oliver Krone, bird of prey specialist at the Leibniz-IZW Department of Wildlife Diseases. Together with doctoral student Alexander Badry from Leibniz-IZW and colleagues Detlef Schenke from JKI and Gabriele Treu from UBA he now analysed in detail which substances are detectable in deceased red kites (Milvus milvus), northern goshawks (Accipiter gentilis), Eurasian sparrowhawks (Accipiter nisus), white-tailed sea eagles (Haliaeetus albicilla) and ospreys (Pandion haliaetus). The team analysed carcasses collected between 1996 and 2018.

    “We found rodenticide residues in liver tissues of more than 80 percent of the northern goshawks and red kites which we examined”, says lead author Badry. In total, 18 percent of the northern goshawks and 14 percent of the red kites exceeded the threshold level of 200 ng per gram body mass for acute toxic effects. This is expected to contribute to previously reported declines in survival of red kites in Germany. “In white-tailed sea eagles we found rodenticides in almost 40 percent of our samples, at lower concentrations, whereas exposure in sparrowhawks and ospreys was low or zero.” Overall, more than 50 percent of the birds had rodenticide levels in their liver tissue, about 30% had combinations of more than one of these substances.

    “Rodenticide poisoning represents an important cause of death for birds of prey”, Badry and Krone conclude. “Species that facultatively scavenge have shown to be at high risk for rodenticide exposure.” The application of these pesticides is not restricted to agricultural contexts, such as barns and stables or for controlling common vole populations on arable land. Anticoagulant rodenticides are also frequently used in large-scale forest plantations and in the sewage systems and canals of towns and cities to control rodent populations. The results of the analyses demonstrated that the closer a dead bird was found to urban landscapes such as industrial areas and the urban conurbation, the more likely it was exposed to rodenticides. “It seems that urban areas pose a great risk for birds of prey in terms of exposure to rodenticides, although the extent of exposure was not linked to the urban gradient”, the authors explain. “This means that birds of prey are more likely to be exposed to rodenticides in the vicinity or inside urban areas but it does not automatically mean that more of these substances accumulate.” Species-specific traits such as facultative scavenging on small mammals or foraging on birds that have direct access to rodenticide bait boxes seem to be responsible for the extent of exposure rather than urban habitat use as such. Additionally, accumulation takes place through multiple exposures throughout the life of an individual, which is why adults were more likely to be exposed than juvenile birds.

    In addition to rodenticides, the scientists also detected medical drugs such as ibuprofen (14.3 %) and fluoroquinolones (2.3 %) in the bird of prey carcasses. Among the plant protection products, they detected the insecticide dimethoate, which was allowed for use until 2019, and its metabolite omethoate as well as the neonicotinoid thiacloprid in four red kites, which were allowed for use until 2021. The scientists assume that the levels of dimethoate they found were a consequence of deliberate poisoning. The traces of thiacloprid – a substance with a very short half-life in bird organs – hint at an exposure briefly before their death.

    The results of these analyses clearly show that especially rodenticides and deliberate poisoning pose a threat to birds of prey, the authors conclude. This is true both for raptors living in or near urban habitats and facultative scavengers. Known sources of these substances need to be re-evaluated in terms of their effects along the food chain, i.e. in terms of secondary poisoning and potential toxicity to birds of prey. Furthermore, the levels of rodenticides found in white-tailed sea eagles, which do not usually feed on the species that the rodenticides target, indicate that further research on the sources is needed.

    Publication

    Badry A, Schenke D, Treu G, Krone O (2021): Linking landscape composition and biological factors with exposure levels of rodenticides and agrochemicals in avian apex predators from Germany. Environmental Research 193 (2021) 110602. https://doi.org/10.1016/j.envres.2020.110602

    Contact

    Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW)
    in the Forschungsverbund Berlin e.V.
    Alfred-Kowalke-Str. 17, 10315 Berlin

    Dr Oliver Krone
    Scientist in the Department of Wildlife Diseases
    phone: +49 (0)30 5168212
    e-mail: krone@izw-berlin.de

    Alexander Badry
    PhD student in the Department of Wildlife Diseases
    phone: +49 (0)30 5168212
    e-mail: badry@izw-berlin.de

    Jan Zwilling
    Science Communication
    phone: +49 (0)30 5168121
    e-mail: zwilling@izw-berlin.de

    Julius Kühn Institute

    Federal Research Centre for Cultivated Plants
    Königin-Luise-Str. 19, 14195 Berlin, Germany

    Dr Detlef Schenke
    Scientist in the Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection
    phone: +49 (0) 30 8304 2300
    e-mail: detlef.schenke@julius-kuehn.de

    Stefanie Hahn
    Press office
    phone: +49 (0) 3946/47105 or +49 (0)531/2993207
    e-mail: stefanie.hahn@julius-kuehn.de
    Umweltbundesamt (German Environment Agency)
    Wörlitzer Platz 1, 06844 Dessau-Roßlau

    Gabriele Treu
    Research Associate, REACH Chemicals
    e-mail: gabriele.treu@uba.de


    Contact for scientific information:

    Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW)
    in the Forschungsverbund Berlin e.V.
    Alfred-Kowalke-Str. 17, 10315 Berlin

    Dr Oliver Krone
    Scientist in the Department of Wildlife Diseases
    phone: +49 (0)30 5168212
    e-mail: krone@izw-berlin.de


    Original publication:

    Badry A, Schenke D, Treu G, Krone O (2021): Linking landscape composition and biological factors with exposure levels of rodenticides and agrochemicals in avian apex predators from Germany. Environmental Research 193 (2021) 110602. https://doi.org/10.1016/j.envres.2020.110602


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology, Chemistry, Environment / ecology, Medicine, Zoology / agricultural and forest sciences
    transregional, national
    Research results, Transfer of Science or Research
    English


    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).