idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst

Science Video Project

idw-News App:


Google Play Store

Share on: 
01/27/2023 13:12

The future of robotics is soft and tactile – TUD startup teaches robots to feel

Claudia Kallmeier Pressestelle
Technische Universität Dresden

    Robotics has evolved at an unprecedented rate over the past several decades. Yet many robots remain inflexible, cumbersome and noisy. Now, the TU Dresden spin-off PowerON seeks to change that. It aims to break down the barrier between humans and robots.

    The next generation of robotics will feature sensory skins, fabricated muscles and artificial neurons printed on flexible materials, opening up new fields of application. “We’re observing a drastic upward trend in automation across all areas of industry and will soon see more of this in our everyday life,” says Dr. Markus Henke, Junior Research Group Leader at TU Dresden’s Institute of Semiconductors and Microsystems and CEO of PowerON.

    The start-up uses the results of collaborative research conducted by TU Dresden and the University of Auckland in New Zealand, where Markus Henke completed a two-year postdoc fellowship after earning his doctorate at our Faculty of Electrical and Computer Engineering. In close cooperation with TU Dresden, he and the local team explored the scientific foundations of multifunctional dielectric elastomers in soft robotics as part of a Marie Curie Fellowship awarded by the European Commission. Upon his return to TU Dresden, he and his colleagues founded PowerON with the help and support of the dresden | exists start-up service start-up grant and venture capital funding. In addition, Dr. Markus Henke acquired an Emmy Noether Junior Research Group at the Chair of Microsystems, which studied the foundations of bioinspired robotics based on dielectric elastomers.

    “Once the technology is advanced enough, we expect to encounter robots not just in the industry but also in our daily lives.” To this end, the PowerON team wants to use its very first product – a type of sensory fingertip for industrial robots – to substantially expand on robots’ fields of application and allow conventional robot grippers to perform more delicate tasks. These could prove useful for handling fragile items such as eggs or test tubes, removing rubber products from injection molds, harvesting fruits and vegetables, or even being implemented at home and in medical care. With a view to the decreasing number of skilled workers, researchers see great potential in this area. The initial practical tests are set to begin in the coming weeks. The first demonstrator to exhibit the interplay of touch-sensitive skin, manufactured muscles and artificial neurons has already been completed. It is a gripper that is exclusively powered by artificial muscles, which are, in turn, controlled by artificial neurons. The gripper is a 3D print of flexible materials, does not feature any conventional joints and is equipped with a tactile skin that can feel how and where an object is gripped.

    PowerON works closely with TU Dresden and is a partner in the large-scale research project “6G-life.” “This partnership is a testament to the cooperation potential between science and industry and how such collaborative projects can contribute to quickly transferring scientific findings into commercial products,” says Prof. Andreas Richter, Chair of Microsystems and Director of the Institute of Semiconductors and Microsystems.

    Contact for scientific information:

    Dr.-Ing. E.-F. Markus Henke
    Tel.: +49 351 463-39962

    More information:

    First SAXONY! TechTalks on December 6, 202 Emmy Noether Junior Research Group MEiTNER PowerON spin-off


    Apple PowerON
    Apple PowerON


    Criteria of this press release:
    Electrical engineering, Information technology
    transregional, national
    Organisational matters, Research projects



    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.


    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).


    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).