idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst

Science Video Project

idw-News App:


Google Play Store

Share on: 
02/28/2024 17:21

Overcrowding increases tree mortality, perhaps explaining higher biodiversity in tropical forests

Jennifer Opel Pressestelle
Universität Bayreuth

    When a tree is surrounded by many similar individuals, its mortality increases, which is probably caused by specialised pathogens or herbivores. This effect occurs in forests all over the world, but is more pronounced in rare tropical tree species, which could contribute to the astonishing tree species diversity of tropical forests. This was discovered by a team of 52 scientists led by Lisa Hülsmann, Professor of Ecosystem Analysis and Simulation at the University of Bayreuth, and Florian Hartig, Professor of Theoretical Ecology at the University of Regensburg. Their results have now been published in Nature.

    How tropical forest communities can support hundreds of species without one species becoming dominant and others going extinct has puzzled ecologists over centuries. More than 50 years ago, ecologists Daniel Janzen and Joseph Connell hypothesized that the stable climatic conditions in the tropics allow pathogens to specialize more strongly on individual tree species, causing trees to grow less and die more frequently when surrounded by other trees of the same species - a reaction called density dependence. If this density dependence increases towards the equator, this could explain the increase in tree species diversity towards the equator. Ecologists have long sought evidence of this phenomenon. But, until now, they did not have the data and analytical tools to compare the strength of the mechanism between tropical and temperate forests. The large international research team now used new methods and data to find out whether the hypothesized mechanism really exists.

    "The nearly 2.5 million trees monitored at 23 sites worldwide show density dependence, but not necessarily more towards the tropics," says Lisa Hülsmann. But in tropical forests, species with stronger density dependence tended to be less abundant. The authors of the study suspect that this pattern is due to a more effective regulation of population sizes in tropical forests. This in turn could contribute to the comparatively high species diversity. According to Florian Hartig, the results are partially consistent with Janzen and Connell's idea. Specialized pathogens may indeed have a stronger influence on tropical biodiversity than in temperate forests, but the link is more subtle than suspected. Stuart Davies, Director of the ForestGEO network, states: “This study illustrates the fundamental importance of long-term, large-scale studies of the world's forests to elucidate the key processes that sustain biodiversity in these critical ecosystems.”
    The results of this study offer valuable insights into the mechanisms that influence biodiversity in tropical and temperate forests. Especially in times of climate change, the highly specialized interactions between trees and pathogens could be disrupted, with potentially unfavorable effects on local tree species diversity. However, the researchers emphasize that further studies are needed to fully understand the implications of these findings for tree species diversity in different forest ecosystems.

    The Bavarian Climate Research Network bayklif, funded by the Bavarian State Ministry of Science and the Arts, supported the research. The researchers obtained the forest data for the analysis from the ForestGEO network, which is part of the Smithsonian Institute.

    Contact for scientific information:

    Jun. Prof. Dr. Lisa Hülsmann
    Ecosystem Analysis and Simulation
    Telefon: +49-921-55-5650

    Original publication:

    Hülsmann et al., Latitudinal patterns in stabilizing density dependence of forest communities, Nature 2024, /


    Mo singto forest
    Mo singto forest
    Lisa Hülsmann
    Universität Bayreuth

    Forest Monitoring
    Forest Monitoring
    Lisa Hülsmann
    Universität Bayreuth

    Criteria of this press release:
    Biology, Environment / ecology, Zoology / agricultural and forest sciences
    transregional, national
    Research results



    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.


    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).


    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).