idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/25/2007 11:59

Lebenswichtiger Kitt - Forscher aus Münster untersuchen die "extrazelluläre Matrix"

Dr. Christina Heimken Presse- und Informationsstelle
Westfaelische Wilhelms-Universität Münster

    Weshalb fällt unser Körper nicht auseinander und löst sich in seine Bestandteile auf? Dafür sorgt die "extrazelluläre Matrix"; sie gibt den Zellverbänden ihre Struktur. Sie ist allerdings kein bloßer Kitt, sondern spielt auch eine wichtige Rolle bei der Steuerung der Körperzellen. An der WWU Münster untersucht der von der Deutschen Forschungsgemeinschaft geförderte Sonderforschungsbereich (SFB) 492 "Extrazelluläre Matrix: Biogenese, Assemblierung und zelluläre Wechselwirkungen" seit dem Jahr 2000 ihre komplexen Funktionen. Die Forscher haben dabei auch die Rolle der Matrix bei der Entstehung häufiger Erkrankungen wie Rheuma, Krebs, Haut- und Gelenkerkrankungen im Blick.

    "Unser Organismus ähnelt einem Staatsgebilde, in dem vielerlei spezialisierte Zellen zusammenarbeiten", erklärt Prof. Dr. Peter Bruckner, Sprecher des SFB 492. "Alle Zellen sind mit der extrazellulären Matrix in Kontakt oder sogar von ihr umgeben." Die Matrix ermöglicht den Zellen die Orientierung im Raum, bildet "Straßen", die der Zellwanderung dienen, beeinflusst die Kommunikation der Zellen untereinander und regelt manchmal auch die Leistung einzelner Zellen. Aufgebaut wird die Matrix von den Zellen selbst. Sie besteht aus Fasern und Netzwerken von Strukturproteinen, wie zum Beispiel Kollagenen.

    Die Wissenschaftler untersuchen im SFB viele verschiedene Fragestellungen, bei denen die extrazelluläre Matrix eine Rolle spielt, zum Beispiel Entzündungsprozesse, Blutgerinnung, Immunabwehr oder Infektionen durch Bakterien. Eine Fragestellung betrifft den Aufbau der Matrix selbst: "Wir wissen zwar bereits viel über die einzelnen Komponenten der Matrix, aber sehr wenig darüber, wie sich diese zu Fasern und Netzwerken zusammenlagern", so Prof. Bruckner. Mehrere SFB-Teilprojekte untersuchen daher den Aufbauprozess der extrazellulären Matrix, die je nach Gewebetyp unterschiedlich zusammengesetzt sein kann.

    Ein solches Teilprojekt analysiert den Aufbau der Matrix, die in Knorpelgewebe zu finden ist. "Wir bringen die verschiedenen Kollagene in vitro, also außerhalb von Körper oder Zellkultur, zusammen und verfolgen, was passiert", veranschaulicht Dr. Uwe Hansen das Vorgehen. Die Proteine ordnen sich von selbst an und bilden Matrixstrukturen, die die Forscher unter dem Elektronenmikroskop untersuchen. Dieser Vorgang in vitro ist gut mit dem im Körper vergleichbar. "Indem wir defekte Proteine dazugeben, können wir zum Teil auch simulieren, was in Patienten mit geschädigtem, arthrotischem Knorpelgewebe geschieht - dadurch wächst unser Verständnis des Krankheitsverlaufs" erklärt Dr. Uwe Hansen die Bedeutung der Forschung für die Medizin.

    Die reibungslose Kommunikation zwischen Körperzellen und extrazellulärer Matrix ist nicht immer erwünscht - dann nicht, wenn Tumorzellen im Spiel sind. "Zellen des so genannten malignen Melanoms, einer Form von bösartigem Hautkrebs, nutzen die Blutbahn, um sich im Körper zu verteilen und Metastasen in anderen Geweben zu bilden", erklärt Prof. Dr. Martin Steinhoff das Problem, mit dem sich seine Arbeitsgruppe beschäftigt. Um die Blutbahn wieder verlassen und in das Körpergewebe eindringen zu können, öffnen sich die Tumorzellen eine Tür durch die Gefäßwand, indem sie die Zellen der Gefäßwand dazu bringen, zu "kooperieren".

    Die Tumorzellen geben bestimmte Enzyme, so genannte Proteasen, ab, die von speziellen Rezeptormolekülen auf der Oberfläche der Gefäßzellen erkannt werden. Als Reaktion bilden die Gefäßzellen Moleküle, die den Tumorzellen das "Andocken" an die Gefäßwand erleichtern. Zusätzlich geben sie bestimmte Moleküle an die extrazelluläre Matrix ab. Diese Matrix-Moleküle erleichtern es den Tumorzellen, durch die extrazelluläre Matrix, die die Blutgefäße auf der Außenseite umgibt, in das Körpergewebe einzuwachsen. Die Forscher versuchen, Details dieses Kommunikations-Prozesses aufzuklären: "Wir untersuchen, welche Proteasen und Protease-Rezeptoren für die Kommunikation zwischen Tumorzelle und Gefäßwand zuständig sind und welche Bedeutung sie für das Wachstum und die Streuung - also die Metastasierung - von Hauttumoren wie dem malignen Melanom haben", so Prof. Steinhoff.

    Eine der häufigsten Erkrankungen der Gefäßwände ist die Arteriosklerose, umgangssprachlich bekannt als "Arterienverkalkung", die zu Herzinfarkt und Schlaganfall führen kann. Eine spezielle Variante dieser Erkrankung, bei der Ablagerungen an den Gefäßwänden entstehen, tritt schon bei Kindern auf. "Wir haben ein bestimmtes Enzym gefunden, das die Gefäßverkalkung verhindert. Kinder, denen das Enzym durch einen genetischen Defekt fehlt, erkranken an Arteriosklerose", erklärt Privatdozent Dr. Frank Rutsch. Die Forscher untersuchen nun, ob dieses Enzym auch eine Rolle bei der Entstehung der Arterienverkalkung spielt, die unter Erwachsenen verbreitet ist. Besonders interessiert sie dabei auch, wie sich die extrazelluläre Matrix bei der Verkalkung strukturell verändert.

    Um die Struktur der Matrix zu analysieren, nehmen die Forscher sie ganz genau "unter die Lupe". Dabei erhalten sie Unterstützung: Zwei Teilprojekte bilden "Serviceeinheiten", deren Mitarbeiter ihren Kollegen unter die Arme greifen, wenn es darum geht, Proteine und andere Biomoleküle zu analysieren oder Gewebestrukturen mikroskopisch zu untersuchen. Prof. Dr. Horst Robenek, Experte für Elektronenmikroskopie, leitet eines dieser Teilprojekte. Seine Arbeitsgruppe hat eine spezielle Technik entwickelt, die eine dreidimensionale Darstellung der zu untersuchenden Strukturen ermöglicht. Die Gruppe unterstützt alle Wissenschaftler des SFB, die diese Methode nutzen wollen. Wie wichtig die Mikroskopie für viele Untersuchungen der extrazellulären Matrix ist, fasst Prof. Robenek zusammen: "Über die Jahre ist jede am Projekt beteiligte Arbeitsgruppe mal bei uns gewesen".


    More information:

    http://sfb492.uni-muenster.de/ SFB 492


    Images

    Colorierte elektronenmikroskopische Aufnahme von Kollagenfibrillen (rot) der menschlichen Haut. Proteoglykan-Moleküle (dunkelblau) geben dem Kollagengerüst zusätzliche Stabilität.
    Colorierte elektronenmikroskopische Aufnahme von Kollagenfibrillen (rot) der menschlichen Haut. Prot ...
    Völker/SFB 492
    None


    Criteria of this press release:
    Biology, Information technology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research projects
    German


     

    Colorierte elektronenmikroskopische Aufnahme von Kollagenfibrillen (rot) der menschlichen Haut. Proteoglykan-Moleküle (dunkelblau) geben dem Kollagengerüst zusätzliche Stabilität.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).