idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/27/2010 18:00

Scientists develop new method to identify glycosylated proteins

Anja Konschak Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie

    Various processes in our body are controlled by subsequent changes of proteins. Therefore, the identification of such modifications is essential for the further exploration of our organism. Now, scientists of the Max Planck Institute of Biochemistry in Martinsried, Germany, have made a crucial contribution to this: Using a new method, they have been able to identify more than 6,000 glycosylated protein sites in different tissues and have thus established an important basis for the better understanding of all life processes (Cell, May 28, 2010).

    Many biological mechanisms like immune response, apoptosis or pathogenesis of diseases are based on the subsequent transformation of single components of proteins, the amino acids. Scientists call this process “posttranslational protein modification”. Although the technologies in proteomics have developed rapidly in the last years, until now the identification of such modified proteins was only possible with limitations. Particularly, the transformation of proteins by glycosylation – carbohydrates binding to single amino acids – has been widely unexplored. But exactly this process is one of the most important mechanisms for the transformation of proteins and plays an important role in the formation of organs and organisms. When errors occur during the protein modification or in case it takes place in an unregulated way, this can contribute to diseases like Alzheimer’s disease or Creutzfeldt-Jakob disease.

    Now, scientists of the Max Planck Institute of Biochemistry in the research department “Proteomics and Signal Transduction”, headed by Matthias Mann, have been able to shed light on the dark: They developed a method based on mass spectrometry that allows the identification of N-glycosylated protein sites in different tissues in a highly efficient way. N-glycosylation is a specific type of glycosylation, during which the carbohydrates bind on a certain component of a protein, the amino acid asparagine (abbreviated with “N”).

    The new method is based on a filter technique which offers the possibility to extract also poorly accessible proteins from biological samples. The scientists combined this method with the application of high-resolution mass spectrometers whereby they were able to identify 6,367 N-glycosylated protein sites. Furthermore, they derived novel recognition sequence patterns for N-glycosylation.

    These findings constitute an important progress in proteomics, because they help to understand the processes inside of the human body even better. Moreover, they could play an essential role for the investigation of diseases. For example, the scientists managed to identify some modified protein sites which are associated with different illnesses: They discovered N-glycosylated sites, unknown up to now, on proteins which play an important role in Alzheimer’s disease. Because N-glycosylation is involved in many processes which are going wrong in Alzheimer’s disease, scientists suspect that this type of protein modification directly causes the disease or, at least, influences its course crucially. Hence, the Max Planck scientists hope that the results of this study could contribute to the further investigation of diseases like Alzheimer’s. [UD]

    Original Publication:

    D. Zielinska, F. Gnad, J. Wisniewski, M. Mann:
    Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints.
    Cell, May 28, 2010.

    Contact:

    Prof. Dr. Matthias Mann
    Proteomics and Signal Transduction
    Max Planck Institute of Biochemistry
    Am Klopferspitz 18
    82152 Martinsried
    mmann@biochem.mpg.de

    Anja Konschak
    Public Relations
    Max Planck Institute of Biochemistry
    Am Klopferspitz 18
    82152 Martinsried
    Phone ++49/89-8578-2824
    E-mail: konschak@biochem.mpg.de
    http://www.biochem.mpg.de


    More information:

    http://www.biochem.mpg.de/en/news/index.html
    http://www.biochem.mpg.de/mann


    Images

    Ionization of the sample with electro spray prior to the mass spectrometer measurement.
    Ionization of the sample with electro spray prior to the mass spectrometer measurement.
    Picture: Axel Griesch / Copyright: MPI of Biochemistry
    None


    Criteria of this press release:
    Biology, Chemistry, Information technology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Ionization of the sample with electro spray prior to the mass spectrometer measurement.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).