Konstanzer Forscherteam beobachtet erstmalig Anderson-Lokalisierung
Wellen können sich in einem ungeordneten Medium nicht ausbreiten, wenn zwischen zwei Störstellen weniger als eine Wellenlänge liegt. Diese Feststellung machte der Physiker Philip W. Anderson im Jahr 1958. Bei der Erklärung vieler Phänomene in der Festkörperphysik hat diese Vorhersage eine wichtige Rolle gespielt, allerdings wurde die so genannte Anderson-Lokalisierung noch nie direkt beobachtet. Forschern der Universität Konstanz und der Universität Zürich ist nun der Nachweis gelungen, dass die Ausbreitung von Licht in sehr stark streuenden Medien tatsächlich zum Erliegen kommt. Ihre Ergebnisse wurden im Wissenschaftsmagazin „Nature photonics“ publiziert.
Trübe Medien, wie beispielsweise Wolken, streuen Licht mehrfach, so dass es gleichmäßig in allen Richtungen und Farben aus dem Medium heraustritt. Aus diesem Grund erscheinen Wolken weiß. Das Licht breitet sich in diesem Fall durch die Wolke aus wie ein diffundierender Farbstoff in einer Flüssigkeit. Wenn nur Licht einer bestimmten Farbe oder Wellenlänge verwendet wird, treten Interferenzeffekte auf, die dazu führen, dass sich ein zufälliges Muster aus hellen und dunklen Flecken bildet. „Wenn diese Unordnung ein gewisses Maß erreicht, so dass weniger als eine Wellenlänge zwischen zwei Streuungen liegt, kann sich das Licht im Medium nicht mehr ausbreiten“, erklärt Prof. Dr. Georg Maret, Professor am Fachbereich Physik der Universität Konstanz. Dieser Zustand der ausgebremsten Lichtdiffusion wird nach ihrem Entdecker Philip W. Anderson als Anderson-Lokalisierung bezeichnet.
Bisher war es in der Forschung nicht möglich, die Anderson-Lokalisierung direkt zu beobachten. Physiker der Universität Konstanz und der Universität Zürich konnten jetzt in einem Experiment die Anderson-Lokalisierung von Licht erstmals eindeutig nachweisen. Wie aus ihrem im Wissenschaftsmagazin „Nature photonics“ publizierten Artikel hervorgeht, tritt die Anderson-Lokalisierung des Lichts erst bei sehr trüben Medien auf. Um die Ausbreitung des Lichts und damit die Anderson-Lokalisierung sichtbar zu machen, mussten Bilder in einem zeitlichen Abstand von weniger als einer Milliardstelsekunde gemacht werden. Finanziert wurde die Studie von der Deutschen Forschungsgemeinschaft (DFG), dem Center for Applied Photonics (CAP) der Universität Konstanz und dem Schweizerischen Nationalfonds.
Originalveröffentlichung:
T. Sperling, W. Bührer, C. M. Aegerter and G. Maret, Direct determination of the transition to localization of light in three dimensions, Nature Photonics (2012) doi:10.1038/nphoton.2012.313
Kontakt
Universität Konstanz
Kommunikation und Marketing
78457 Konstanz
Telefon: 07531 / 88-3603
Fax: 07531 / 88-3766
E-Mail: kum@uni-konstanz.de
Prof. Dr. Georg Maret
Universität Konstanz
Professur für Experimentalphysik
Telefon: 07531 / 88-4151
E-Mail: georg.maret@uni-konstanz.de
http://www.uni-konstanz.de
Criteria of this press release:
Journalists
Physics / astronomy
transregional, national
Cooperation agreements, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).