idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/05/2014 09:44

Einem altbekannten Material ein modernes Rätsel entlockt

Blandina Mangelkramer Kommunikation und Presse
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Magnetit dient bei chemischen Reaktionen oft als Katalysator. An seiner Oberfläche können andere Metallatome so gebunden werden, dass sie voneinander getrennt bleiben und sich nicht zu größeren Metallpartikeln zusammenschließen. Wissenschaftler vermuten, dass dies chemische Reaktionen besonders gut beschleunigt. Wie diese Eigenschaft zustande kommt, war bisher jedoch nicht bekannt. Wissenschaftler der Technischen Universität Wien und der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben nun nachgewiesen, dass das Geheimnis in der besonderen Struktur der Eisenoxid-Oberfläche liegt. Ihre Ergebnisse haben sie jetzt in dem renommierten Wissenschaftsmagazin Science veröffentlicht.*

    Eisen(II,III)oxid – besser bekannt als Magnetit – ist wegen seiner magnetischen Eigenschaften bereits seit Jahrtausenden für den Menschen interessant; so konnten schon in der Antike Magnetkompasse zur Orientierung gebaut werden. Heute interessieren Wissenschaftler jedoch nicht mehr so sehr die magnetischen Eigenschaften des Materials, sondern das, was sich an der Oberfläche eines Eisenoxid-Kristalls abspielt. Denn diese Vorgänge sind für die guten katalytischen Eigenschaften des Eisenoxids verantwortlich.

    Zusammen mit Forschern der TU Wien haben Wissenschaftler am Lehrstuhl für Festkörperphysik der FAU daher die Struktur der Oberfläche untersucht. Im Inneren eines Kristalls ist es vergleichsweise leicht, die Struktur zu beschreiben – jedes Eisen- bzw. Sauerstoffatom hat einen bestimmten Platz, der sich periodisch wiederholt. „Uns hat dagegen interessiert, wie sich die Atome in den äußersten Lagen des Kristalls anordnen, wo diese Symmetrie gebrochen ist“, erläutert Prof. Alexander Schneider.

    Die Wissenschaftler beobachteten, dass im Oberflächenbereich weniger Eisenatome vorhanden sind und diese sich auch in anderer Weise als im Innern des Kristalls im praktisch unveränderten Sauerstoffgitter anordnen. Dadurch entstehen besondere Bindungsplätze für sich von außen anlagernde Atome und Moleküle. Dies widerlegt die bisherige Annahme, dass die Chemie von Metalloxidoberflächen grundsätzlich durch das Fehlen von Sauerstoffatomen bestimmt wird. Die Ergebnisse lassen erwarten, dass der Mechanismus der Fehlstellenbildung und Umordnung der Metallatome im intakten Sauerstoffgitter auch an den Oberflächen vieler anderer Metalloxide wirksam ist.

    Erlanger Spezialgebiet
    Die Struktur eines so komplexen Materials aufzuklären, ist trotz modernster experimenteller und theoretischer Methoden ein schwieriges Unterfangen. Dies gelang der Forschergruppe in Erlangen mit Hilfe der Beugung niederenergetischer Elektronen (LEED: Low-Energy Electron Diffraction). Bei dieser Methode werden Elektronen auf den Kristall geschossen und an dessen Oberfläche in wohldefinierte Richtungen abgelenkt. Aus den Intensitäten dieser gebeugten Elektronenstrahlen können die Wissenschaftler auf der Basis aufwändiger Modellrechnungen dessen Oberflächenstruktur feststellen. Mit dieser Methode hat sich die Arbeitsgruppe des inzwischen emeritierten Prof. Klaus Heinz am Lehrstuhl für Festkörperphysik der FAU eine weltweite Führungsposition bei der Aufklärung der atomaren Struktur von Kristalloberflächen erarbeitet. „Die in dieser Studie erzielte Übereinstimmung aus Experiment und Vergleichsrechnung ist so gut, dass wir nun nicht nur genauestens über die Eisenoxidoberfläche Bescheid wissen, sondern auch zeigen können, dass die Methode der Elektronenbeugung mit der Beschreibung dieser Materialklasse – entgegen einer in der Fachwelt häufig vertretenen Meinung – bestens zurecht kommt“, freut sich Dr. Lutz Hammer.

    *R. Bliem, et al. , Science, 5. Dezember 2014, Vol. 346, #621 4; doi: 10.1126/science.1260556

    Weitere Informationen für die Medien:
    Dr. Lutz Hammer
    Tel.: 09131/85-28404
    lutz.hammer@physik.uni-erlangen.de

    Prof. Dr. Alexander Schneider
    Tel.: 09131/85-28405
    alexander.schneider@physik.uni-erlangen.de


    Images

    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).