idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/04/2017 12:25

Holografische Analyse von WLAN-Daten liefert dreidimensionale Bilder der Umgebung

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Wissenschaftler der Technischen Universität München (TUM) haben ein holografisches Abbildungsverfahren entwickelt, das die Strahlung eines WLAN-Senders analysiert und daraus dreidimensionale Bilder der Umgebung erzeugt. Einsetzbar wäre das Verfahren beispielsweise im Konzept Industrie 4.0: Betreiber von Industrieanlagen könnten damit in Zukunft automatisiert Objekte auf dem Weg durch die Werkhalle verfolgen.

    Wie der Blick durch ein Fenster, liefert ein Hologramm ein dreidimensional erscheinendes Abbild. Während für das optische Hologramm aufwändige Lasertechnik benötigt wird, lässt sich ein Hologramm der Mikrowellenstrahlung eines WLAN-Senders mit einer feststehenden und einer beweglichen Antenne erzeugen, wie Dr. Friedemann Reinhard und Philipp Holl in der aktuellen Ausgabe des renommierten Fachjournals Physical Review Letters berichten.

    „Mit dieser Technik können wir ein dreidimensionales Bild des Raums erzeugen, in dem sich der WLAN-Sender befindet, so als hätten wir Augen für Mikrowellenstrahlung,“ sagt Friedemann Reinhard, Leiter der Emmy Noether Forschungsgruppe für Quantensensoren am Walter Schottky Institut der TU München. Einsatzmöglichkeiten sehen die Forscher vor allem im Kontext des Konzepts Industrie 4.0, automatisierter Industrieanlagen, wo es oftmals schwierig ist, Teile oder Geräte zu lokalisieren.

    WLAN durchdringt Wände

    Verfahren, bei denen Mikrowellenstrahlung sogar durch Wände hindurch geortet wird, oder bei denen die Veränderung des Signals die Anwesenheit einer Person anzeigt, gibt es bereits. Neu ist, dass die holografische Aufbereitung der WLAN- oder Handysignale ein Abbild des gesamten Raumes liefert.

    „Natürlich liegt es da nahe, sich Sorgen um seine Privatsphäre zu machen, denn selbst verschlüsselte Signale übertragen gewissermaßen ein Bild der Umgebung nach außen,“ sagt Projektleiter Friedemann Reinhard, schränkt aber auch ein „Dass sich das Verfahren in naher Zukunft für den Blick in fremde Schlafzimmer eignet, ist aber eher unwahrscheinlich. Man müsste dazu eine große Antenne um das Gebäude herumfahren, was kaum unbemerkt bleiben dürfte. Da gibt es einfachere Möglichkeiten.“

    Auf wenige Zentimeter genau

    Bisher sind für das Erzeugen von Bildern aus Mikrowellenstrahlung spezielle Sender mit großer Bandbreite erforderlich. Die holografische Auswertung der Daten ermöglichte es den Forschern, auch mit der sehr geringen Bandbreite haushaltsüblicher WLAN-Sender auszukommen, die in den Frequenzbändern 2,4 und 5 Gigahertz senden. Auch Bluetooth- und Handy-Signale können genutzt werden. Die Wellenlänge dieser Geräte entspricht einer Auflösung im Bereich weniger Zentimeter.

    „Statt einer beweglichen Antenne, die Bildpunkt für Bildpunkt misst, könnte man auch eine größere Zahl von Antennen nehmen und damit eine videoähnliche Bildfrequenz erreichen,“ sagt Philipp Holl, der die Versuche durchführte. „Zukünftige WLAN-Frequenzen, wie der geplante IEEE 802.11-Standard mit 60 Gigahertz, erschließen eine Auflösung bis in den Millimeterbereich.“

    Blick in die Zukunft

    Auch aus der Optik bekannte Methoden zur Bildverbesserung können bei der WLAN-Holografie eingesetzt werden: Ein Beispiel ist die aus der Mikroskopie bekannte Dunkelfeld-Methode, die es ermöglicht, schwach streuende Strukturen besser erkennen zu können. Ein weiteres Verfahren ist die Weißlicht-Holografie: Hier nutzten die Forscher die Bandbreite des WLAN-Senders, um Störungen durch Streustrahlung zu eliminieren.

    Das Konzept, Mikrowellen-Hologramme wie optische Bilder zu betrachten, ermöglicht es auch, das Mikrowellenbild mit Kamerabildern zu kombinieren. In das Kamerabild des Handys könnten so aus Mikrowellenbildern gewonnene Zusatzinformationen eingeblendet werden, etwa um Funk-Schlüsselanhänger an verlorenen Gegenstände direkt zu sehen.

    Doch mit ihrer Arbeit stehen die Wissenschaftler erst am Anfang der technologischen Entwicklung. Noch fehlt vor allem Forschung dazu, wie transparent welche Materialien sind. Mit diesen Kenntnissen ließen sich dann zum Schutz der Privatsphäre für Mikrowellen undurchsichtige Anstriche oder Tapeten entwickeln, während man für Fabrikhallen, in denen man den Weg eines Bauteils durch die Anlage verfolgen will, transparente Materialien einsetzen würde.

    Entsprechend weiter entwickelte Technik könnte, so hoffen die Forscher, in Zukunft bei der Suche nach Verschütteten unter einer Lawine oder in einem eingestürzten Haus helfen: Während bisherige Methoden nur die Ortung erlauben, lieferte die holografische Auswertung der Signale auch ein räumliches Abbild der zerstörten Strukturen. Schwere Trümmerstücke könnten Helfer dann umgehen oder verbliebene Hohlräume für die Rettung nutzen und so planvoll den leichtesten Weg zum Opfer finden.

    Die Arbeit wurde unterstützt aus Mitteln des Emmy Noether-Programms der Deutschen Forschungsgemeinschaft (DFG) und aus dem TUM Junior Fellow Fund der Technischen Universität München.

    Publikation:

    Philipp M. Holl and Friedemann Reinhard: Holography of Wi-fi Radiation.
    Physical Review Letters, 05.04.2017 – DOI: 10.1103/PhysRevLett.118.183901
    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.183901
    [Link erst aktiv ab Freitag, 05.05.2017, 17.00 Uhr MESZ]

    Kontakt:

    Dr. Friedemann Reinhard
    Technische Universität München
    Walter Schottky Institut, E24
    Am Coulombwall 4, 85748 Garching, Germany
    Tel.: +49 89 289 12777
    E-Mail: friedemann.reinhard@wsi.tum.de
    Web: http://go.tum.de/354019


    More information:

    https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/33897/ Link zur Pressemitteilung
    http://www.sciencemag.org/news/2017/04/stray-wi-fi-signals-could-let-spies-see-i... Newsmeldung von „Science“ zur Publikation
    https://mediatum.ub.tum.de/1359938 Link zu Bildmaterial


    Images

    Das im realen Bild sichtbare Kreuz aus Alufolie lässt sich aus dem WLAN-Hologramm wieder rekonstruieren (eingeblendetes Bild rechts unten)
    Das im realen Bild sichtbare Kreuz aus Alufolie lässt sich aus dem WLAN-Hologramm wieder rekonstruie ...
    Source: Bild: Friedemann Reinhard/Philipp Holl / TUM


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Electrical engineering, Information technology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Das im realen Bild sichtbare Kreuz aus Alufolie lässt sich aus dem WLAN-Hologramm wieder rekonstruieren (eingeblendetes Bild rechts unten)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).