idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/07/2018 11:07

“Molecular bicycle pedal”: researchers present molecular switch

Dr. Christina Heimken Presse- und Informationsstelle
Westfälische Wilhelms-Universität Münster

    Just like a bicycle pedal that can be turned forwards and backwards – this is how the new molecular switch can be described which Dr. Saeed Amirjalayer, from the University of Münster’s Institute of Physics, and his co-authors have now presented in the journal “Angewandte Chemie” (“Applied Chemistry”). The pedal motion is triggered by light.

    Just like a bicycle pedal that can be pushed forwards and backwards – this is how the new molecular switch can be described which Dr. Saeed Amirjalayer, a researcher in the field of nanotechnology at the University of Münster, and his co-authors from the Universities of Murcia (Spain) and Amsterdam (Netherlands) have now presented in the journal “Angewandte Chemie International Edition”. The pedal motion is triggered by light. What is special in this particular case is that, in contrast to similar molecular switches, the “pedal molecule” needs much less space to work.

    Molecular switches are molecules which reversibly interconvert between two or more states and thereby control molecular processes. In living organisms, for example, such switches are necessary for muscle contraction. Researchers hope that by means of molecular switches they will be able to regulate molecular processes – for example, a controlled release of drugs from nano-capsules.

    “Most of the so-far developed molecular units need a relatively large volume to switch,” explains Saeed Amirjalayer, who works at the Physics Institute and at the Center for Nanotechnology (CeNTech). He cites as an example the molecular rotors developed by the Dutch chemist Prof. Ben Feringa, for which, along with two other researchers, Feringa was awarded the Nobel Prize for Chemistry in 2016. For many applications, however – for example for molecular computers or catalysis – the molecular switches have to be embedded in polymers or crystals. Because of limitations of available space, large structural changes are not possible in these cases.

    The researchers studied the “pedalo motion” using time-resolved Infrared spectroscopy. “For the development and application of photo-responsive molecular switches,” says Saeed Amirjalayer, “it is crucial to know not only the two ‘resting states’ but also the motion between them.” Using this spectroscopic method, the researchers made “snapshots”, in extremely short time intervals, of the molecular switch after it had been activated by light. Combined with quantum chemical calculations, they arrived at a detailed picture of the operation mechanism.

    For his research, Saeed Amirjalayer received funding from the German National Academy of Sciences Leopoldina.

    Original publication:

    Amirjalayer S. et al.: Photoinduced Pedalo-Type Motion in an Azodicarboxamide-Based Molecular Switch. Angewandte Chemie (International Edition); First published: 7 December 2017; Volume 57, Issue 7 February 12, 2018 Pages 1792–1796; DOI: 10.1002/anie.201709666

    Cover Picture: Angew. Chem. Int. Ed. 7/2018); DOI: 10.1002/anie.201800060


    More information:

    http://onlinelibrary.wiley.com/doi/10.1002/anie.201709666/abstract Original publication
    http://onlinelibrary.wiley.com/doi/10.1002/anie.201800060/full Cover Picture (Angew. Chem. Int. Ed. 7/2018)


    Images

    Criteria of this press release:
    Journalists
    Chemistry, Language / literature
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).