idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/03/2018 14:00

The classroom of tomorrow – DFKI and TUK open lab for new digital teaching and learning methods

Christian Heyer DFKI Kaiserslautern
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

    • Smart sensors provide insight into the learning process
    • AR enables collaboration in the classroom
    • Joint research with Japan
    • Economics Minister Wolf visits the new learning lab

    Our educational system considers individual learning to be key for a modern and inclusive society. Nevertheless, today's learning environments seem to take a very limited approach to the necessary adaptive learning process.
    A new lab environment at the German Research Center for Artificial Intelligence (DFKI) in Kaiserslautern – in cooperation with businesses, schools, and universities – is the testing and development site for technologies designed for use in new teaching and learning methods. Jointly operated by Kaiserslautern University of Technology (TUKL) and DFKI, the new Immersive Quantified Learning Lab (iQL) defines itself as a concept and prototype workshop that connects humans and computers and creates the smart learning platform of the future.

    Sensor systems measure learning success

    The "Living Lab" studies various technologies, for example, eye-tracking, language and gesture recognition systems, and Augmented Reality (AR) to determine how these may be practically applied in learning and working scenarios. Educational researchers and professional educators analyze the data and use it for the diagnostics of learning states and progress in learning. For example, the measurement of facial temperature using an infrared camera reveals the stress level of the learner. Combining such data sources with intelligent algorithms, like those in Deep Learning methods, enables totally new insights into individual and group dynamics in the learning process. Possible recommendations for action by the teacher can then be derived. In addition, the analysis data can be used to form opinions about the cognitive state of the learner. For example, in case of increased stress or strain, individual approaches for improving the learning success can be proposed.
    Furthermore, iQL lab studies, most of which are planned as single-user studies, can be carried out simultaneously in a realistic, application-oriented environment in the iQL lab with a large group. This minimizes the time required and reduces external influences.

    Prof. Dr. Andreas Dengel, head of department, Smart Data & Knowledge Services and spokesperson for DFKI Kaiserslautern explains: "The iQL is a brand new instrumented learning environment for participative and individual teaching and learning experiments. Expanding on already established prototypes, these technologies should reveal fascinating new developments in learning. We want to investigate the potential benefits of digital media in the field of education and training by combining different forms of interaction with multimedial learning objectives – while making learning more diverse, more practice-oriented and encouraging curiosity about content. In addition, we want to study the impact of such digital learning environments in comparison to traditional media with regard to mental and cognitive stress situations or for increasing knowledge."

    Prof. Dr. Jochen Kuhn, Head of WG Didactics of Physics at Kaiserslautern University of Technology: "Interactive, sensor-assisted experiments under realistic conditions can provide insights, for example, into individual learning behaviors and the learning success of the students. For lab experiments in the natural sciences, we use smart glasses and other devices to display supplemental information into the learner's field of vision by means of augmented reality. The physical dimensions, for example, may be entered into a virtual diagram that "hovers" above the actual structure. Unseen variables such as temperature and voltage or even the changes in speed and acceleration are made visible by means of color and arrow displays directly on the experimental objects on the basis of actual measured values in real time."

    More effective research in the natural sciences

    In addition to the augmented experimentation, students in the new lab can interact with virtual objects like 3-D models and diagrams and vividly acquire descriptive knowledge. Several students can be occupied with an object at the same time. Such teamwork improves the imagination and enhances long term memory. New kinds of interactive possibilities allow students to intuitively navigate digital textbooks, search, and make notes using fingers or voice input. Multi-touch whiteboards provide teachers the chance to share digital information directly with one, several, or all students. When connected to the teacher's and the student's work stations, it can be used to pass content back and forth between all actors using simple gestures. The "Display As A Service - DAAS" technology developed at DFKI used here has since become established by the spin-off company called Pxio.

    Scientific exchange with Japan

    Another research highlight at iQL is the analysis of learning behavior in subjects having different linguistic and cultural backgrounds. This research is the reason for a close cooperation with colleagues in Japan, developing joint learning experiments that are subsequently evaluated in both the iQL and in a comparable learning lab located at the DFKI- affiliated Osaka Prefecture University. The aim is to study the differences and similarities in learning behaviors in Germany and Japan.

    Premiere at "Knowledge Night in KL"

    Participating in the "Nacht, die Wissen schafft" (English: Knowledge Creation Night), the iQL Lab was open to the public for the first time in Kaiserslautern on April 13, 2018. Prof. Dr. Konrad Wolf, Minister for Science, Education, and Culture in the state of Rhineland-Palatinate remarked on the innovative approach: "Universities have an important function in the digitalization movement: They are at the forefront of technological innovation, they are the home of research and development, and they are driving the digital transformation. A digital education and the acquisition of digital skills are of major importance to us in Rhineland-Palatinate. These are decisive in determining career and lifetime opportunities. Digital learning enables content, paths, and methods to be tailored to the needs of the individual in these times of increasing social diversity and business differentiation. Digital teaching and learning are changing the classroom and enabling a brand new world in which to learn. The iQL Lab provides outstanding conditions conducive to study and discovery."

    iQL and CeBIT 2018

    Research scientists from iQL demonstrate how eye-tracker and augmented reality are implemented in different learning and working scenarios at CeBIT 2018 in Hannover, Germany. Experience the latest sensor technologies and learn about the future of learning with the various demonstrators at the DFKI exhibit stand (Hall 27, Stand F62) from June 11-15, 2018.


    More information:

    https://www.dfki.de/web/presse/pressemitteilung/2018/iql_eng See this press release on www.DFKI.de
    http://iql-lab.de iQL Homepage


    Images

    Workstations equipped with eytrackers allow real-time analysis of reading behavior. Photo: DFKI.
    Workstations equipped with eytrackers allow real-time analysis of reading behavior. Photo: DFKI.
    DFKI
    None

    Various sensor technologies of the iQL (here electro-ocular glasses) allow conclusions to be drawn about learning behavior.
    Various sensor technologies of the iQL (here electro-ocular glasses) allow conclusions to be drawn a ...
    DFKI
    None


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils
    Information technology, Language / literature, Physics / astronomy, Psychology, Teaching / education
    transregional, national
    Research projects, Transfer of Science or Research
    English


     

    Workstations equipped with eytrackers allow real-time analysis of reading behavior. Photo: DFKI.


    For download

    x

    Various sensor technologies of the iQL (here electro-ocular glasses) allow conclusions to be drawn about learning behavior.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).