idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/24/2018 11:14

Molecular switch will facilitate the development of pioneering electro-optical devices

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

    The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative effort, a team of physicists at the Technical University of Munich has succeeded to use single molecules as switching elements for light signals.

    "Switching with just a single molecule brings future electronics one step closer to the ultimate limit of miniaturization," says nanoscientist Joachim Reichert from the Physics Department of the Technical University of Munich.

    Different structure – different optical properties

    The team initially developed a method that allowed them to create precise electrical contacts with molecules in strong optical fields and to address them using an applied voltage. At a potential difference of around one volt, the molecule changes its structure: It becomes flat, conductive and scatters light.

    This optical behavior, which strongly depends on the structure of the molecule, is quite exciting for the researchers because the scattering activity – Raman scattering, in this case – can be both observed and, at the same time, switched on and off via an applied voltage.

    Challenging technology

    The researchers used molecules synthesized by a team based in Basel and Karlsruhe. The molecules change their structure in a specific way when they get charged. They are arranged on a metal surface and contacted using the corner of a glass fragment with a very thin metal coating as a tip.

    This serves as an electrical contact, light source and light collector, all in one. The researchers used the fragment to direct laser light to the molecule and measure tiny spectroscopic signals that vary with the applied voltage.

    Establishing reliable electric contacts between individual molecules is extremely challenging from a technical point of view. The scientists have now successfully combined this procedure with single-molecule spectroscopy, allowing them to observe even the smallest structural changes in molecules with great precision.

    Competition for Silicon

    One goal of molecular electronics is to develop novel devices that can replace traditional silicon-based components using integrated and directly addressable molecules.

    Thanks to its tiny dimensions, this nanosystem is suitable for applications in optoelectronics, in which light needs to be switched by an electrical potential.

    Publication:

    Hai Bi, Carlos-Andres Palma, Yuxiang Gong, Peter Hasch, Mark Elbing, Marcel Mayor, Joachim Reichert und Johannes V. Barth,
    Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction: J. Am. Chem. Soc. 140, 14, 4835-4840
    Link: http://dx.doi.org/10.1021/jacs.7b12818

    Further information

    The research project was funded by the German Research Foundation (DFG) via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) and the SPP 1243, as well as the European Union (ERC Advanced Grant MolArt and FET Measure 2D-ink) and the China Scholarship Council (CSC).

    Contact:

    Dr. Joachim Reichert / Prof. Dr. Johannes Barth
    Technical University of Munich
    Surface and Interface Physics (E20)
    Tel.: +49 89 289 12608 – E-Mail: e20office@ph.tum.de
    http://www.e20.ph.tum.de/en/


    More information:

    https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34665/ Link to the press release


    Images

    Electrically switchable organic molecule.
    Electrically switchable organic molecule.
    Image: Yuxiang Gong / TUM / Journal of the American Chemical Society
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, all interested persons
    Chemistry, Electrical engineering, Information technology, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Electrically switchable organic molecule.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).